

CS-503 Visual Intelligence

Amir Zamir

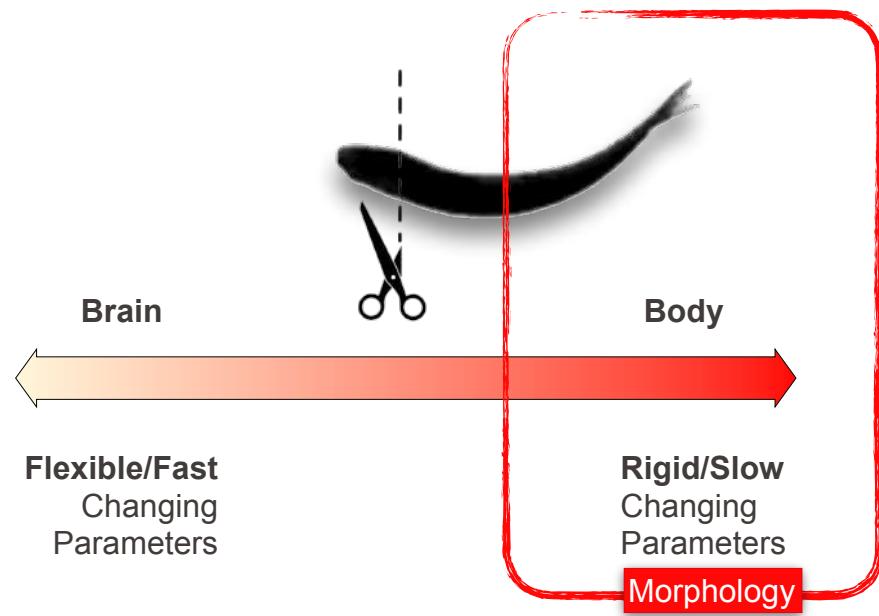
Lecture 12

Logistics

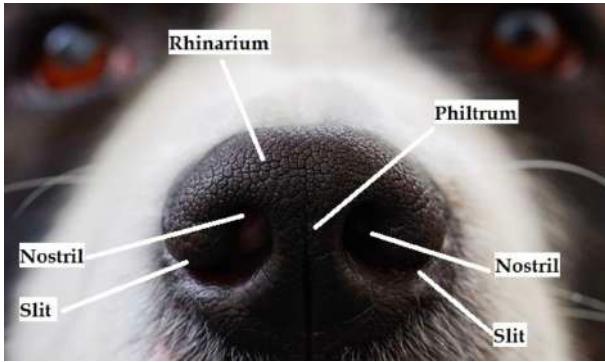
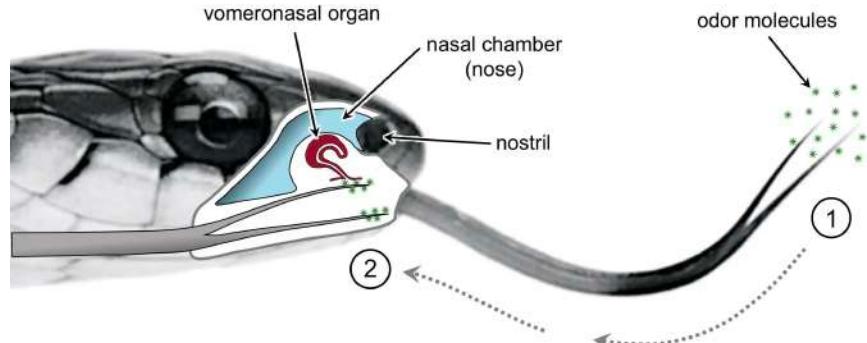
Week Num.	Date	Item
1	20.02	- lecture 1
2a	25.02	- lecture 2
2b	27.02	- lecture 3
3a	04.03	- lecture 4
3b	06.03	- lecture 5
4a	11.03	- lecture 6 (+ Q&A)
	11.03	- Transformers notebook assignment due
4b	13.03	- lecture 7
5a	18.03	- lecture 8
5b	20.03	- lecture 9
6a	25.03	- lecture 10
6b	27.03	- lecture 11 (+ Q&A)
	01.04	- Active agents notebook assignment due
7a	01.04	- lecture 12
7b	03.04	- lecture 13
8a	08.04	- lecture 14
8b	10.04	- lecture 15 (+ Matchmaking session)
	13.04	- Project proposals due
	15.04	- all subsequent sessions from 15.04 onwards are for Q&A
	18.04	- Project proposals due, when revision is needed.
	22.04	- MidSem break - No classes
	25.04	- MidSem break - No classes
	29.04	- Foundation Models assignment due
	01.05	- lecture 16
	09.05	- Project progress report due
	13.05	- Robustness assignment due (extra credit)
	20.05	- Moodle homework due
	26.05	- Final project presentation video due
	27.05	- Final project presentation Part I
	29.05	- Final project presentation Part II
	30.05	- Project report due

Recap

- Is the fish intelligent?
- Where is the intelligence?



Other modalities: olfactory



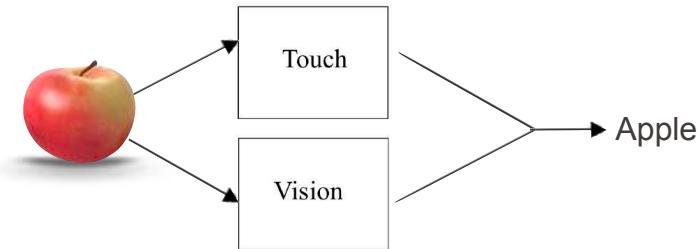
Vision: “va”
Audio: “ba”

Vision: “ba”
Audio: “ba”

-

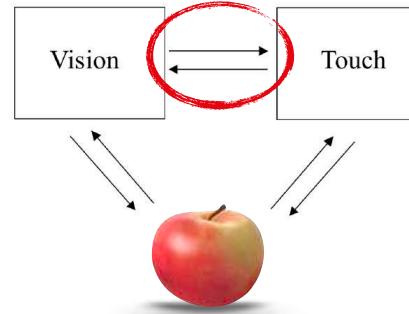
Roles of Multimodality in Learning

For sensory fusion / better inference



For self-supervision

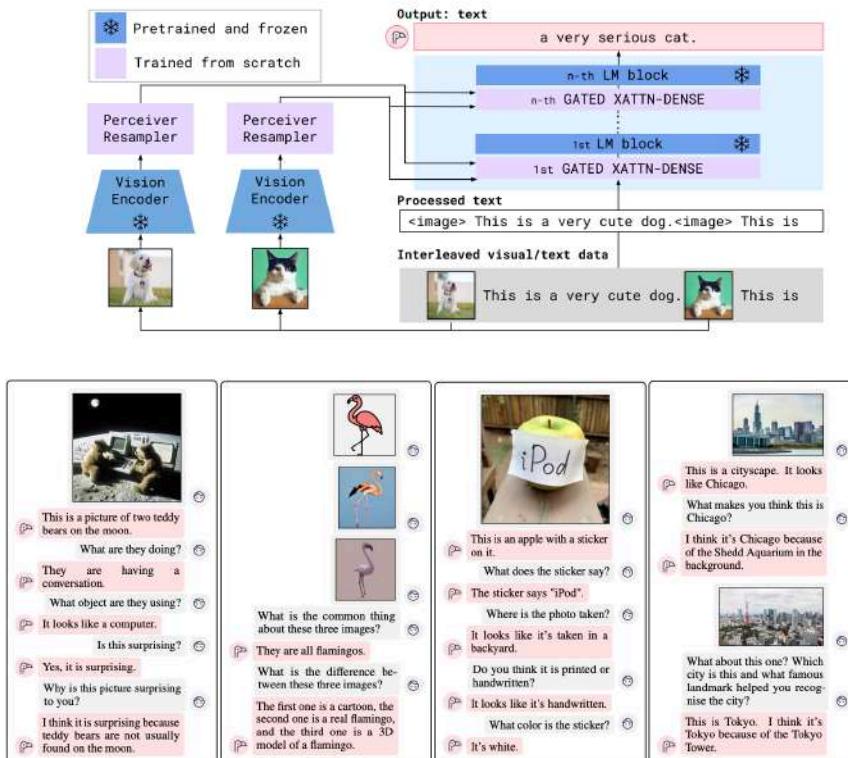
Cross-Modal Learning



- “Six Lessons from Babies”, Smith&Gasser’05:
 - *Multiple overlapping and time-locked sensory systems enable the developing system to educate (“supervise”) itself.*

VLM (Vision-Language Model)

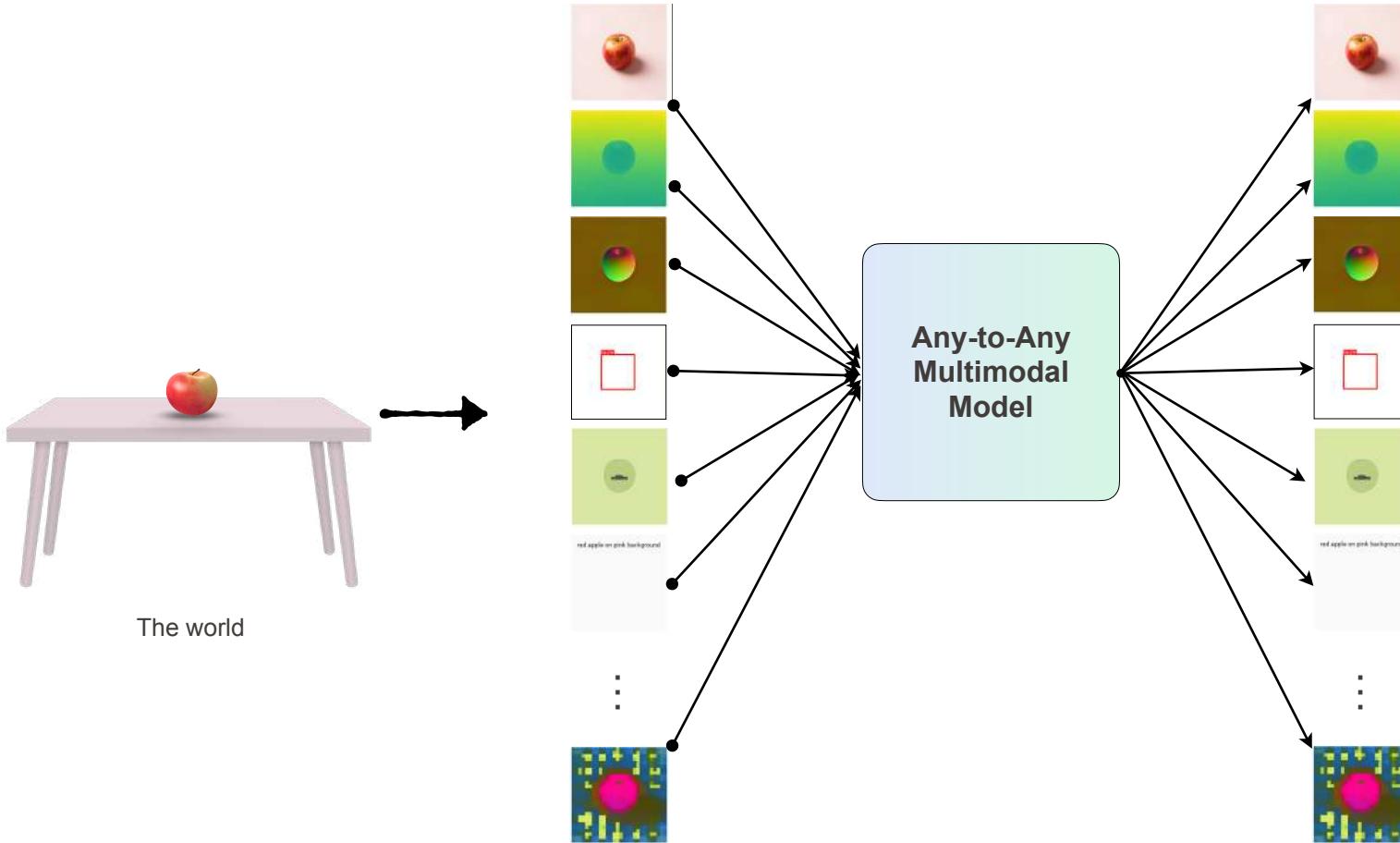
~ (RGB-Text chatbot)



Flamingo,, Alayrac et al, 2022.

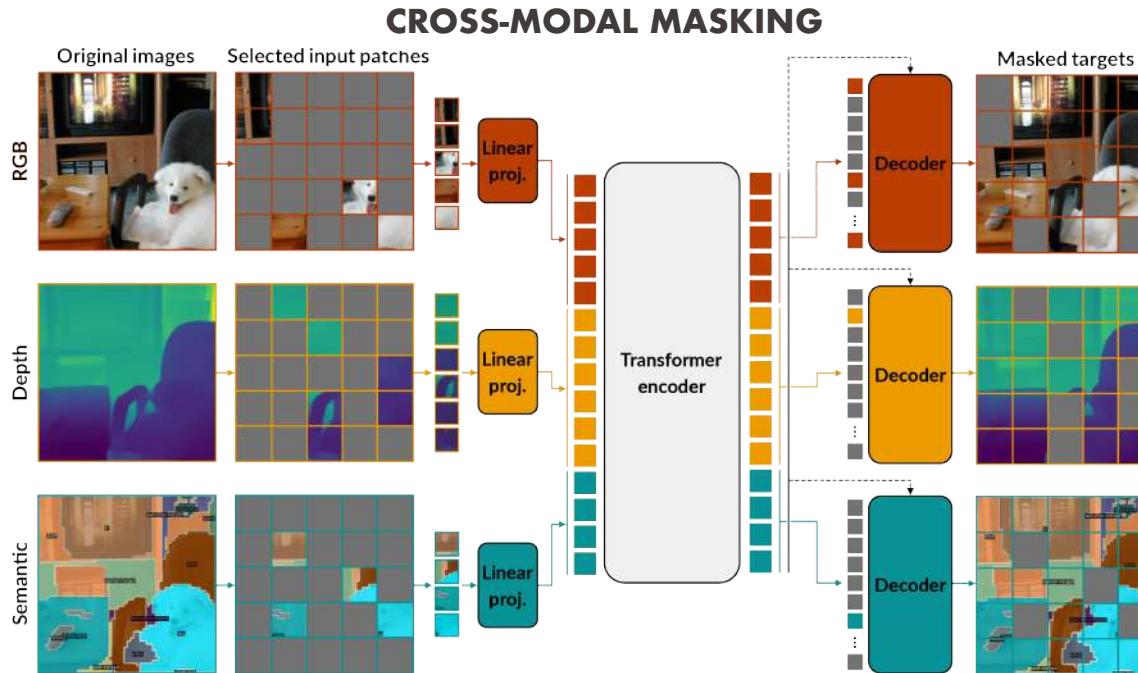
Input Prompt				Completion
	This is a chinchilla. They are mainly found in Chile.		This is a shiba. They are very popular in Japan.	a flamingo. They are found in the Caribbean and South America.
	What is the title of this painting? Answer: The Hallucinogenic Toreador.		Where is this painting displayed? Answer: Louvres Museum, Paris.	Arles.
	Output: "Underground"		Output: "Congress"	"Soulomes"
	2+1=3		5+6=11	3x6=18
	Output: A propaganda poster depicting a cat dressed as French emperor Napoleon holding a piece of cheese.		Output: A pink room with a flamingo float.	A portrait of Salvador Dali with a robot head.
	Les sanglots longs des violons de l'automne blesser mon cœur d'une langueur monotone.		Pour qui sont ces serpents qui sufflent sur vos têtes?	Je suis un cœur qui bat pour vous.
	pandas: 3		dogs: 2	giraffes: 4
	I like reading		, my favourite play is Hamlet. I also like	, my favorite book is
				Dreams from my Father.
What happens to the man after hitting the ball? Answer:				he falls down.

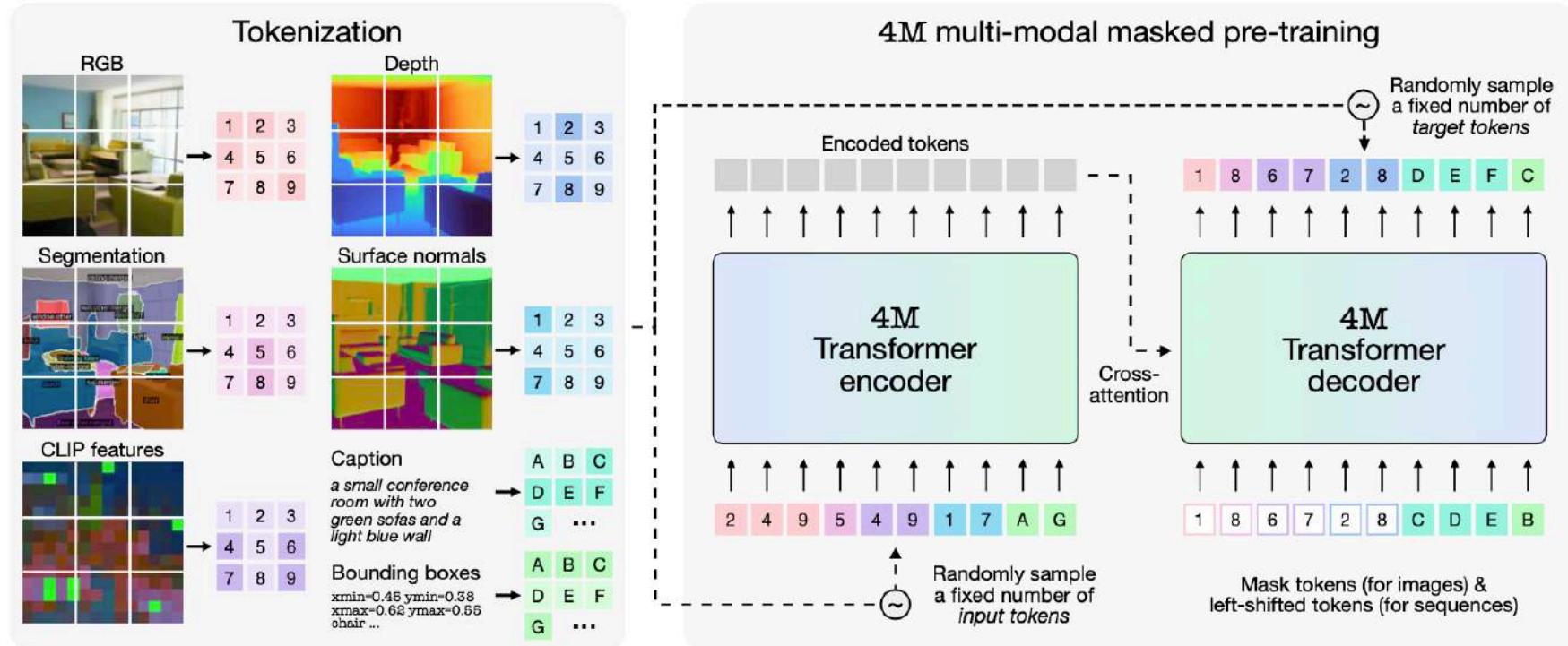
Core function: Predict anything from anything



Cross-Modal Masked Modeling

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders





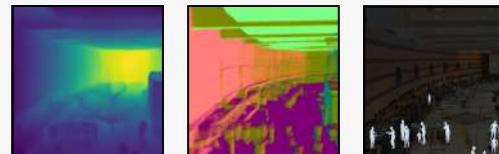
- **Re-designed architecture:** format compatibility, tokenization, randomized token subset training.
- **Scaled up:** tens of modalities. Data and model size to billions scale. Training length trillions of tokens.

RGB modalities

RGB Color palette

Geometric modalities

Depth Surface normals 3D human poses

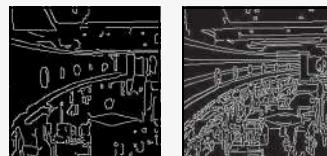


Semantic modalities

Bounding boxes Semantic segmentation SAM instances

Edge modalities

SAM edges Canny edges

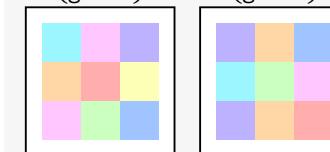


Feature map modalities

CLIP features (dense) DINOv2 features (dense) ImageBind features (dense)

Global feature modalities

DINOv2 features (global) ImageBind features (global)



Text modalities

Caption T5-XXL embeddings Web text

Getting ready for my flight!

Albany International Airport serves as the major air center for the Capital Region, Northeastern ...

Metadata modalities

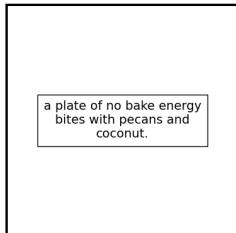
Image metadata Semantic metadata Geometric metadata

Orig. res.: 512x512
Colorfulness: 35%
Contrast: 45%
Brightness: 60%
Saturation: 40%
...

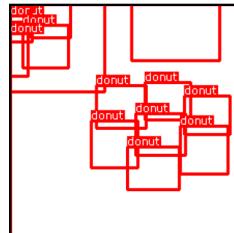
Humans: 7
Instances: 12
Objectness: 40%
Walkability: 40%
Clutter score: 75%
...

Geometric complexity: 55%
Occlusion score: 25%
...

Query image

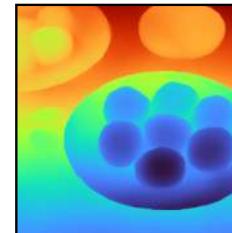


Caption

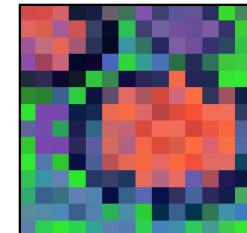


Bounding Boxes

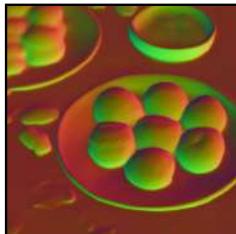
Semantic Seg.



Depth

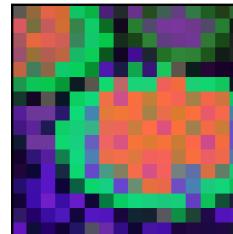


CLIP

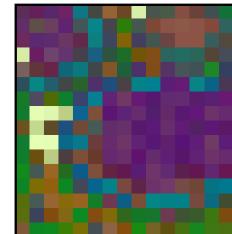


Surface Normals

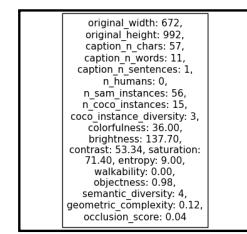
Human poses



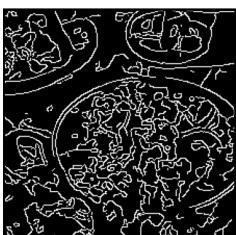
DINOv2



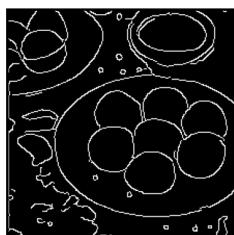
ImageBind



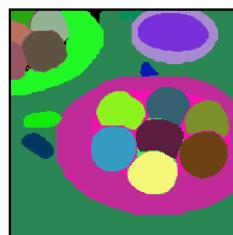
Metadata



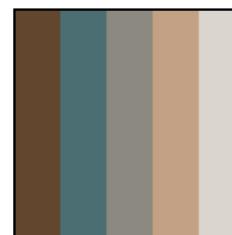
Texture Edges



SAM Edges



SAM instances

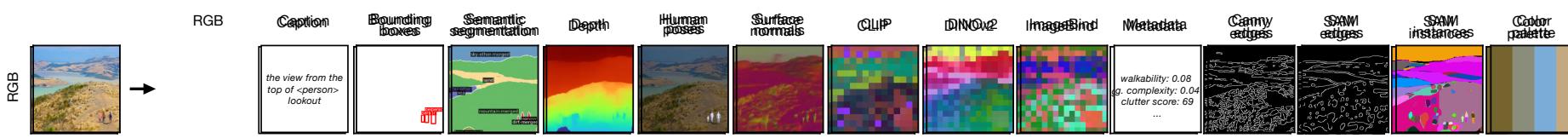


Color Palette

Any-to-Any generation

RGB

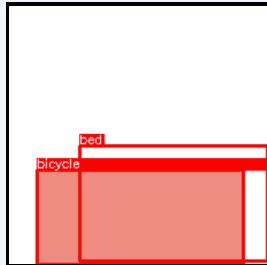
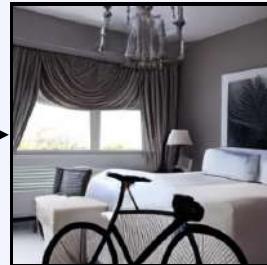
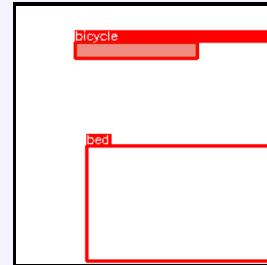
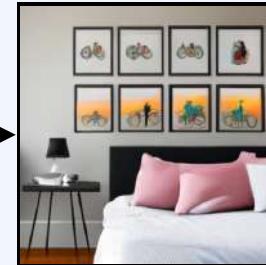
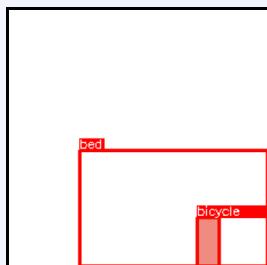
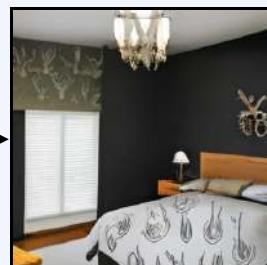
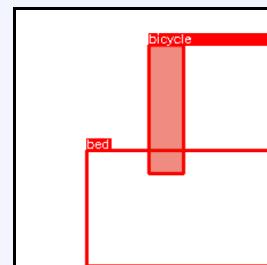
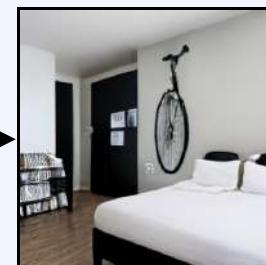
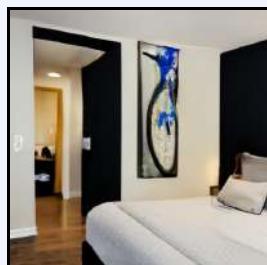
Any-to-Any generation



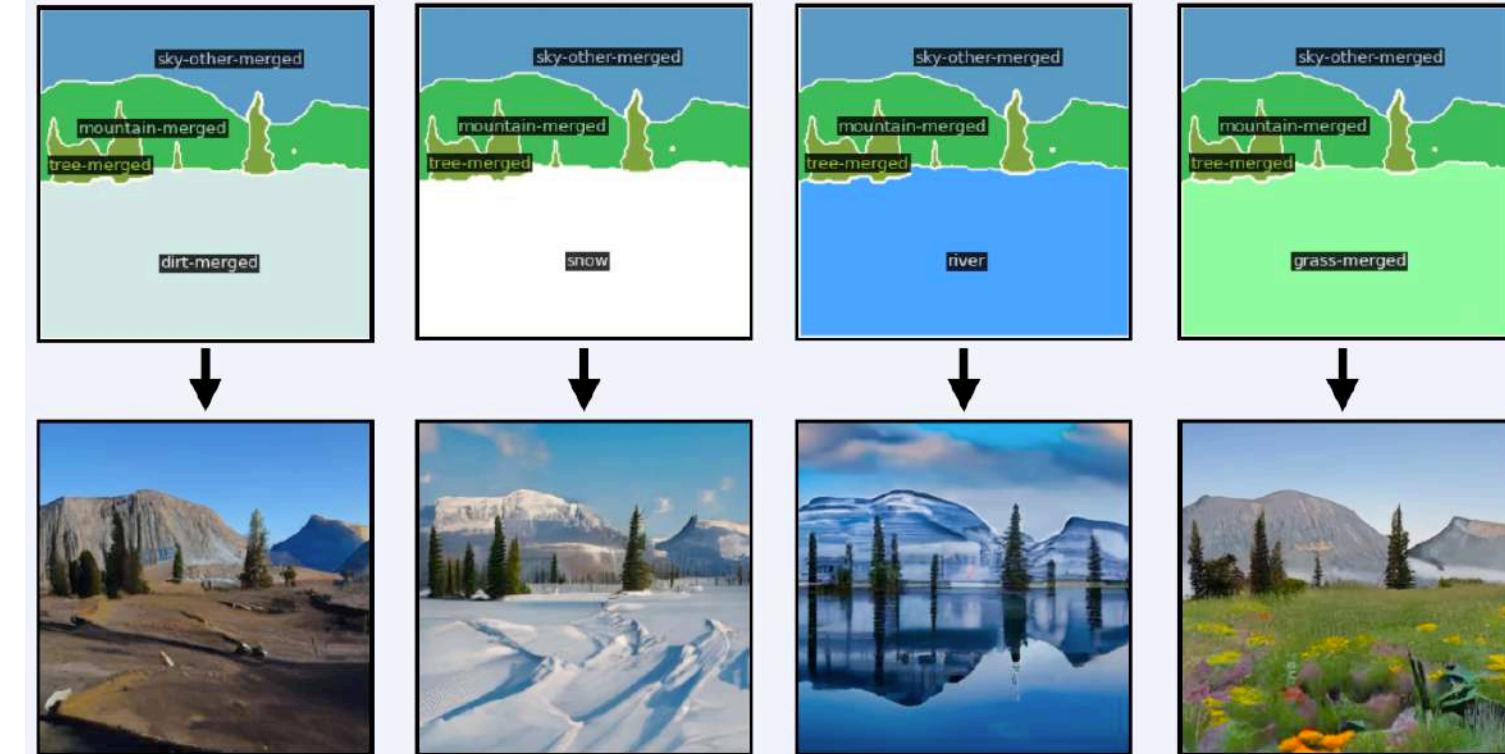
Any-to-Any generation

Input		Prediction						
		RGB	Caption	Detection	Normal	Depth	Segmentation	CLIP
RGB			<p>RGB</p> <p>caption: this homemade barbecue sauce recipe whips up in 10 minutes, cheaper than store bought and tastes better, plus you have all the ingredients you have on hand.</p>					
Caption			<p>caption: chicken breast topped with the ingredients to make this dish inside a pressure cooker.</p>					
Detection			<p>caption: onion and carrot slices in a saucepan.</p>					
Normal			<p>caption: this easy creamy masala recipe is a fan favorite classic Indian dish. It's delicious and great with < a person > or as a little chowder for a late night meal.</p>					
Depth			<p>caption: kadai chicken in a pot</p>					
Segmentation			<p>caption: no bake white chocolate & raspberry truffles are the perfect afternoon snack.</p>					
CLIP			<p>caption: overhead shot of a white bowl of red lentil dal, peas, and cilantro wings on a wooden surface.</p>					

Probing the learned model

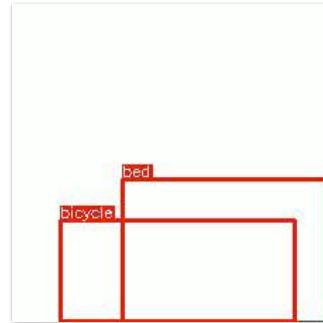


Probing the learned model



Probing the learned model

Bounding box input



Caption input

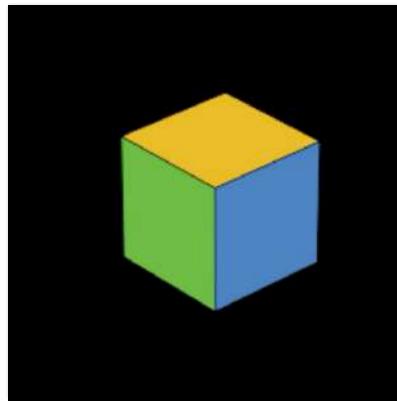
a photo of a
bedroom, studio
light

Frame-by-frame
Predictions

Bounding box input

Probing the learned model

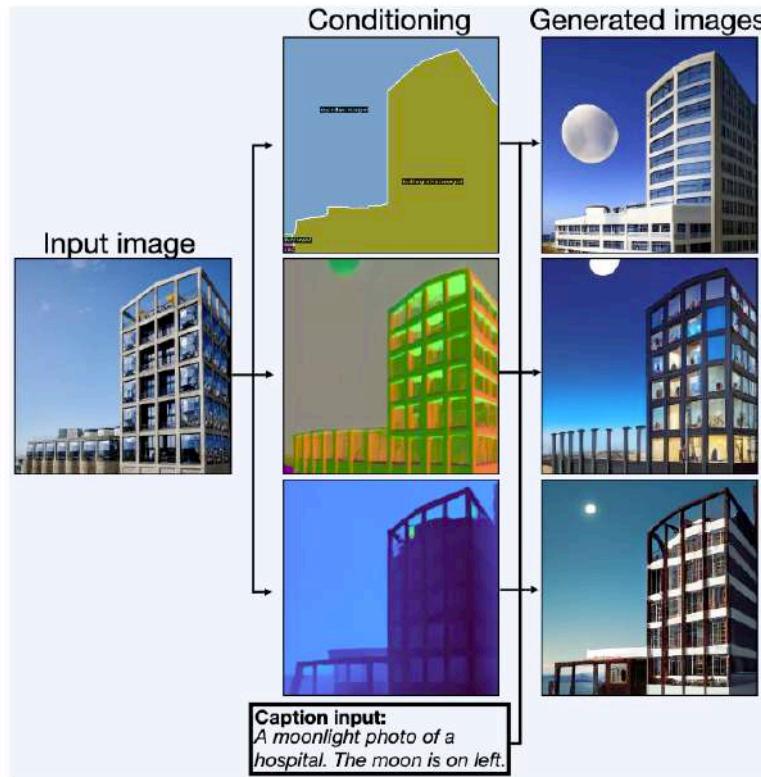
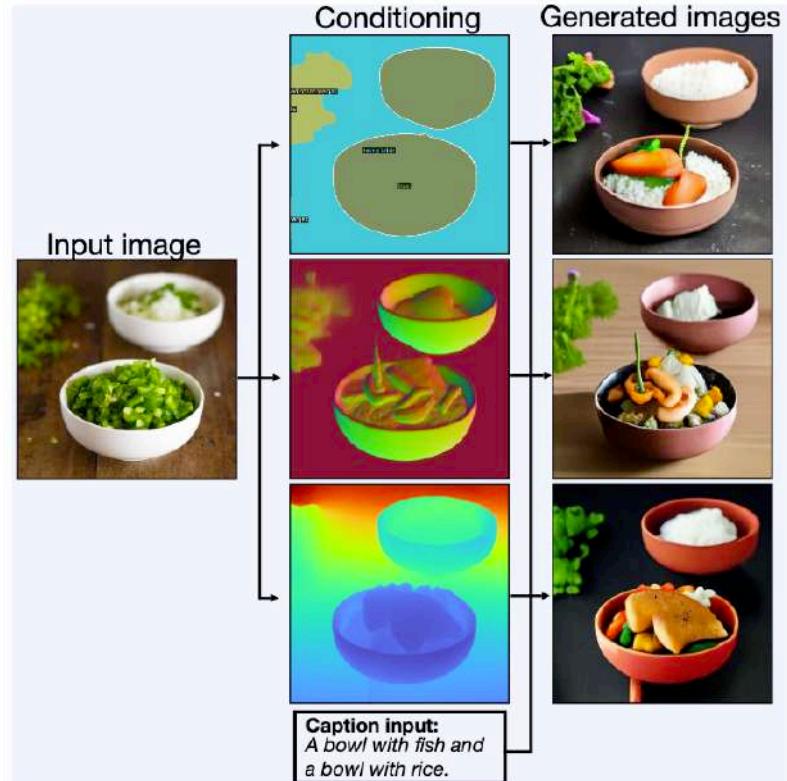
Changing SAM polygon input



RGB prediction

RGB prediction (with polygon overlay)

Fixed caption
a framed painting of
mountains inside a
bedroom

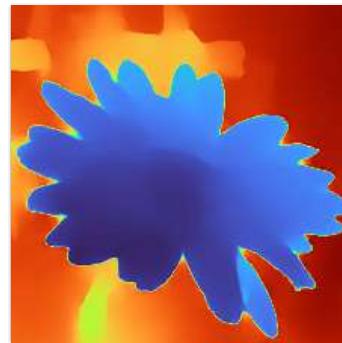


Caption input

an oil painting of
a blue flower

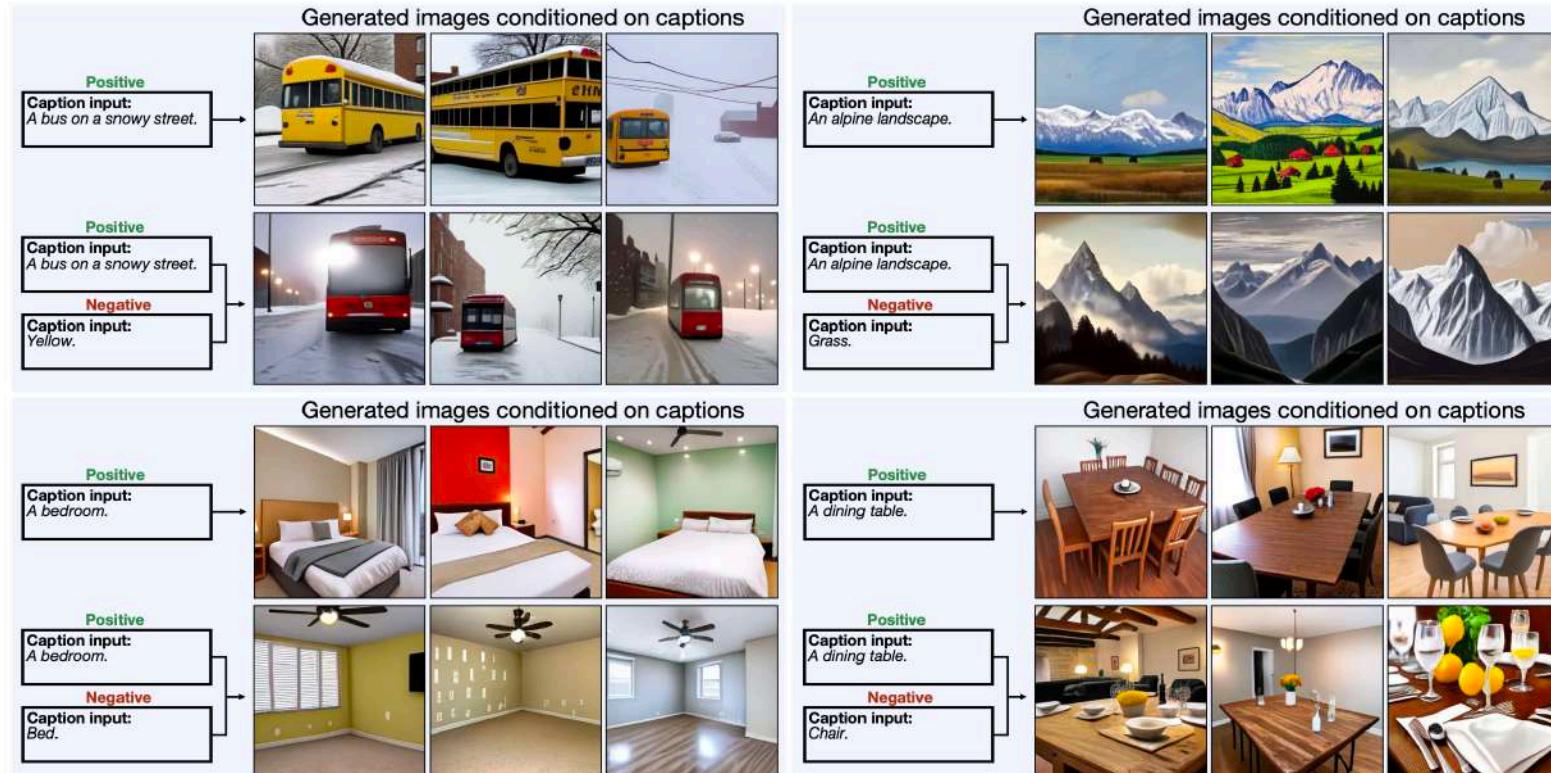
Fixed weight

→
🔒 2.0

Depth

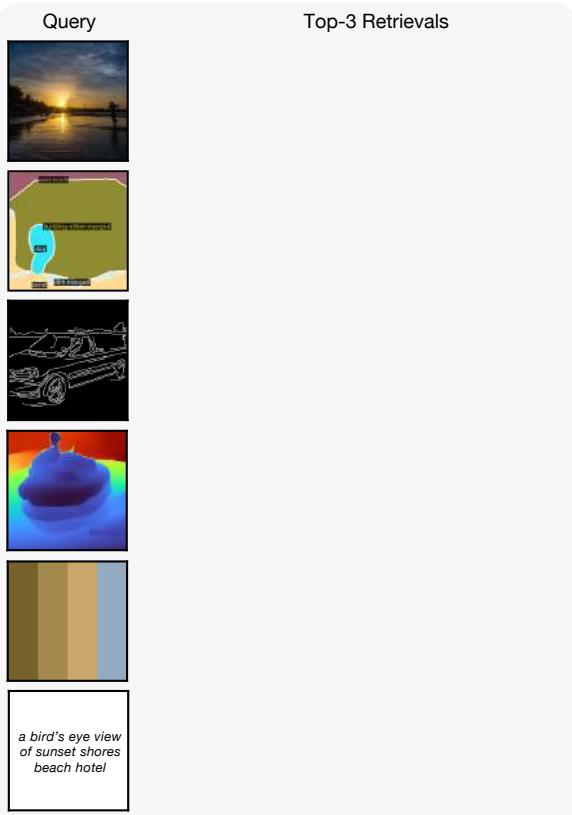
Varying
weight

multi-modal guidance & weighting



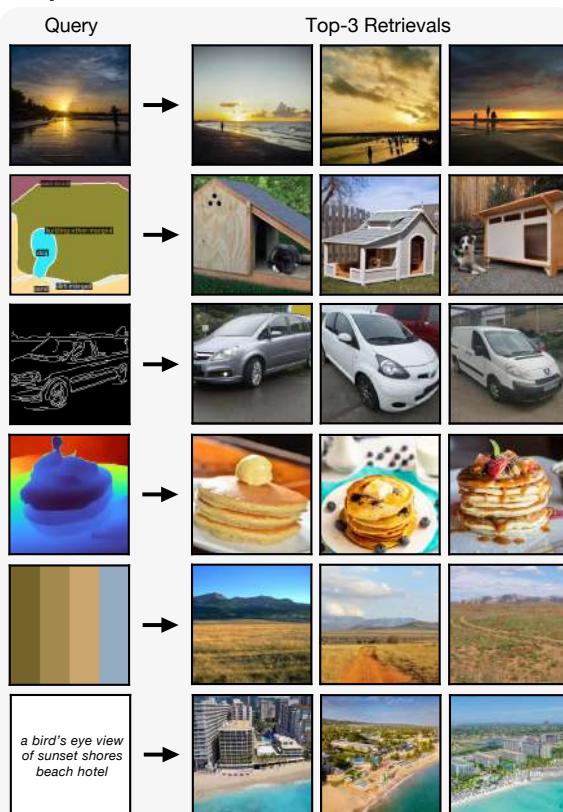
Multimodal retrieval

Any-to-RGB retrieval

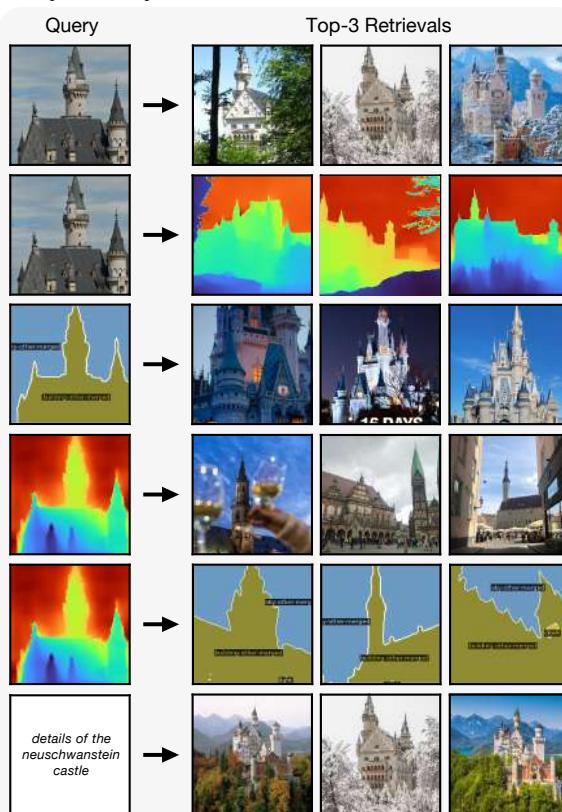


Multimodal retrieval

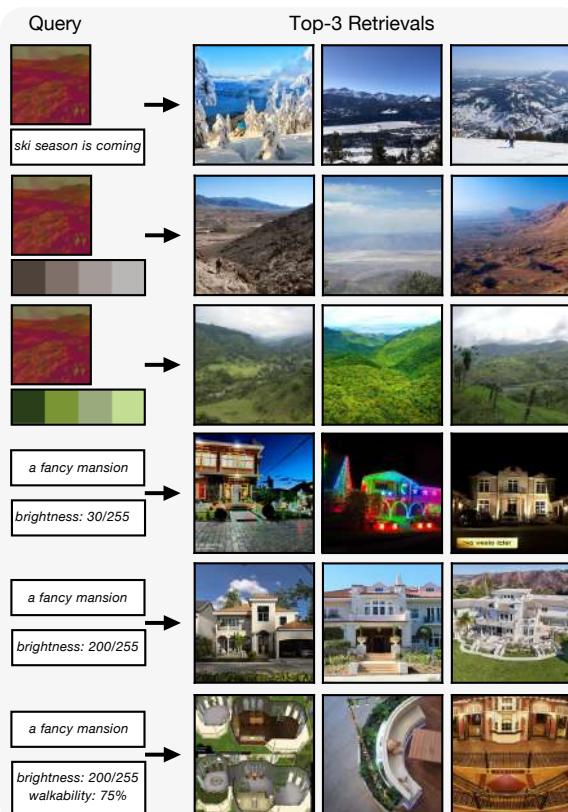
Any-to-RGB retrieval



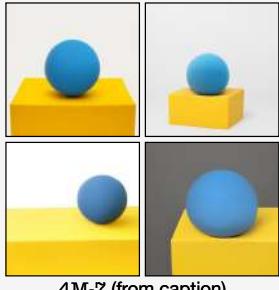
Any-to-any retrieval



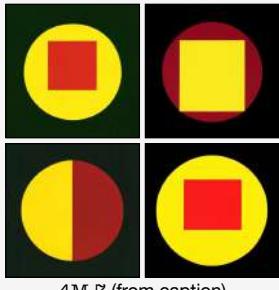
Multimodal retrieval



Caption input: a metallic blue sphere to the left of a yellow box made of felt

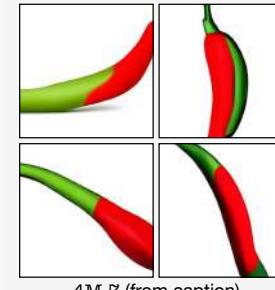


Caption input: a black background with a large yellow circle and a small red square

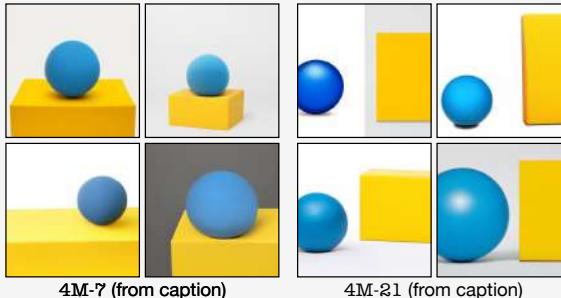


Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

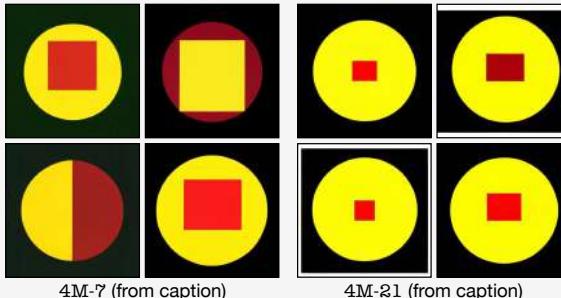
Caption input: a green pepper to the left of a red pepper



Caption input: a metallic blue sphere to the left of a yellow box made of felt

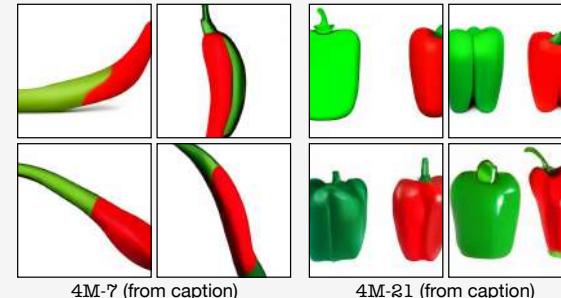


Caption input: a black background with a large yellow circle and a small red square

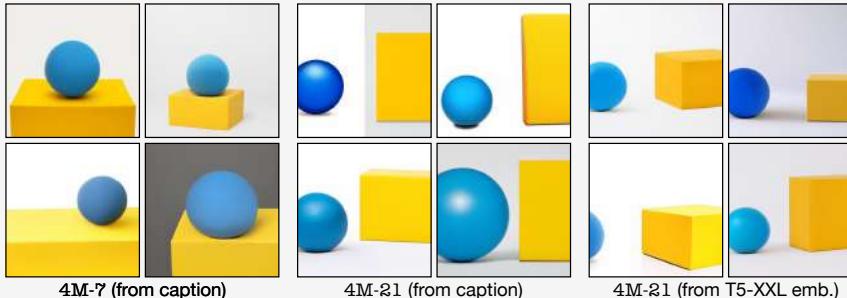


Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

Caption input: a green pepper to the left of a red pepper

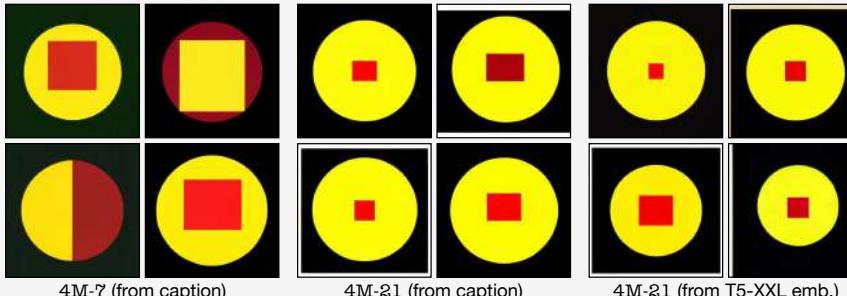


Caption input: a metallic blue sphere to the left of a yellow box made of felt

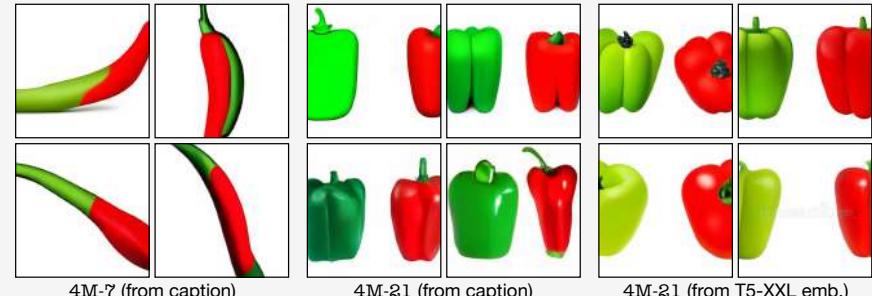


Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

Caption input: a black background with a large yellow circle and a small red square



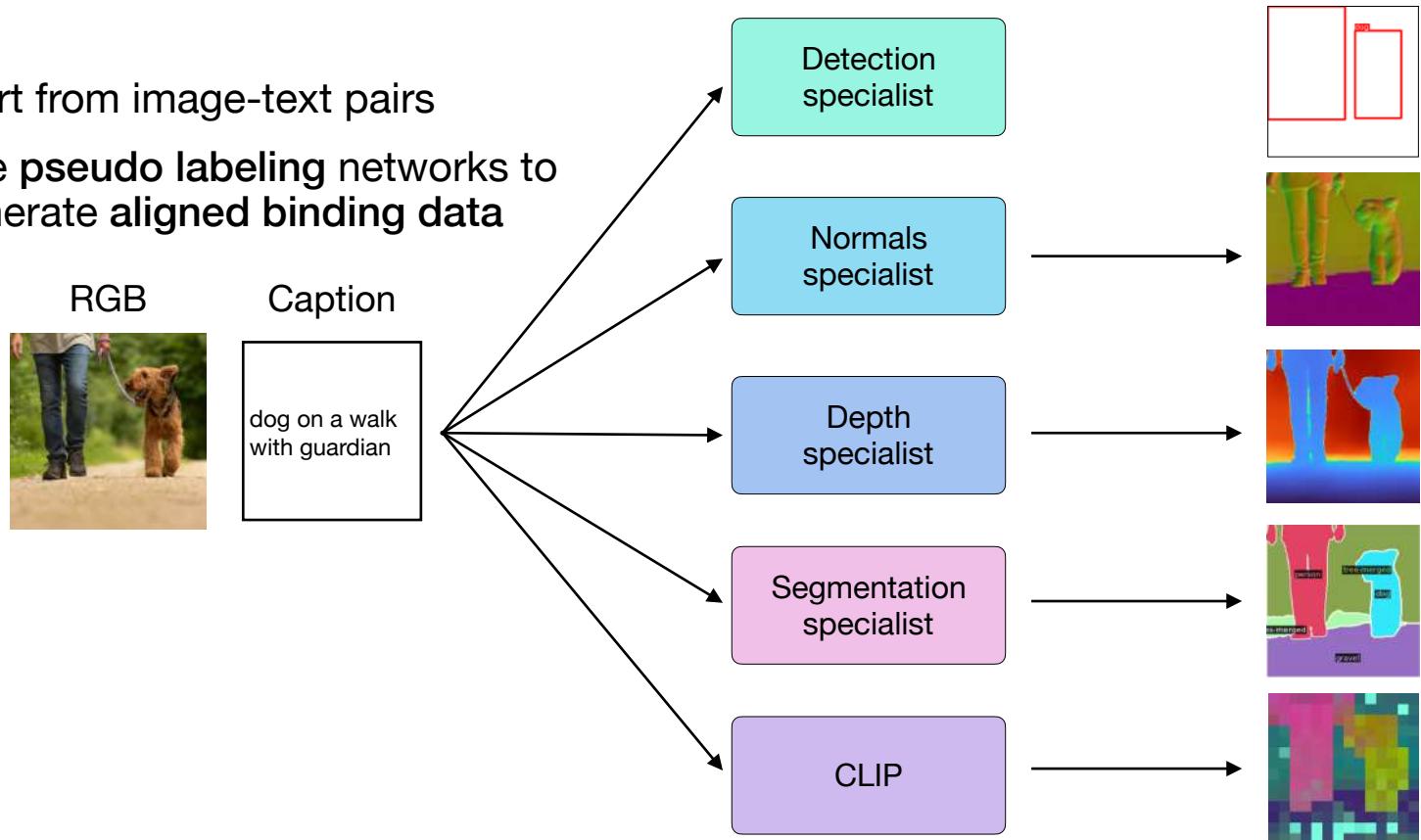
Caption input: a green pepper to the left of a red pepper



The screenshot shows a user interface for a live demo. The top navigation bar includes 'Inputs', 'Outputs', and 'Results' tabs, with 'Outputs' currently selected. The 'Inputs' section on the left contains a 'Add' button and a list of modules: Superpixels, Depth, Semantic Segmentation, Camera, Bounding boxes, and Mask. The 'Outputs' section in the center contains a 'Slider Resolution' button, a 'Modality' dropdown set to 'Color' (which is highlighted in red), and a list of modules: Superpixels, Depth, Semantic Segmentation, Camera, Bounding boxes, and Mask. The 'Results' section on the right contains three buttons: 'Download', 'Delete', and 'Copy to inputs'. The overall layout is clean and organized, typical of a web-based application interface.

Pseudo Labeling

- Start from image-text pairs
- Use **pseudo labeling** networks to generate aligned binding data



Pseudo Labeling

Input Image

Upload your own image or click on one of the sample queries below. Click on the cube to use a random query image from previous uploads.

refresh to upload new image

Verification expired. Check the checkbox again.

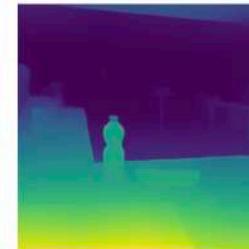
I'm not a robot

reCAPTCHA
Privacy + Terms

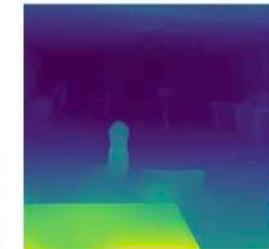
Depth Estimation

Omnidata Depth

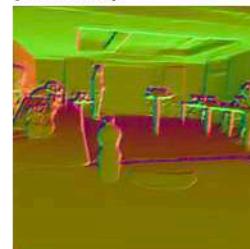
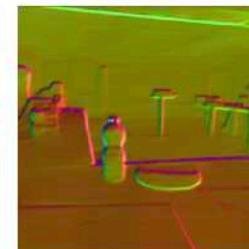
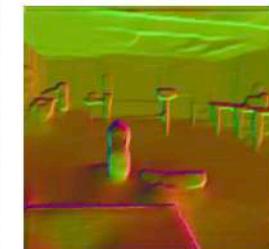
MiDaS Depth



Taskonomy Depth (X-TC)

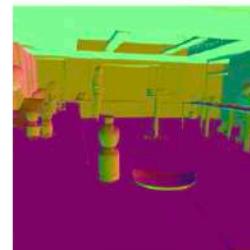


Surface Normals Extracted from Predicted Depth

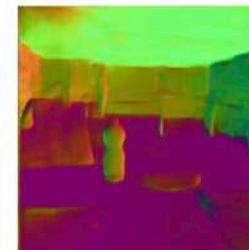
Depth \rightarrow Normal (Omnidata)Depth \rightarrow Normal (MiDaS)Depth \rightarrow Normal (X-TC)

Surface Normal Estimation

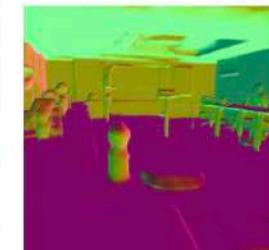
Omnidata Normal



Oasis Normal



Taskonomy Normal (X-TC)



<https://omnidata.vision/demo/>

Omnidata, ICCV'21.

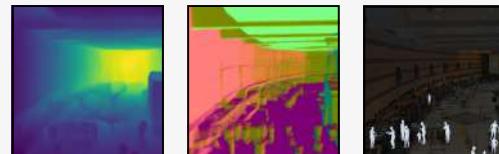
3D Common Corruptions CVPR'22.

RGB modalities

RGB Color palette

Geometric modalities

Depth Surface normals 3D human poses

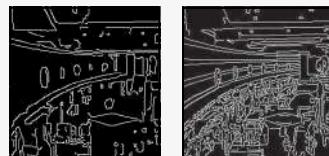


Semantic modalities

Bounding boxes Semantic segmentation SAM instances

Edge modalities

SAM edges Canny edges



Feature map modalities

CLIP features (dense) DINOv2 features (dense) ImageBind features (dense)

Global feature modalities

DINOv2 features (global) ImageBind features (global)

Text modalities

Caption T5-XXL embeddings Web text

Getting ready for my flight!

Albany International Airport serves as the major air center for the Capital Region, Northeastern ...

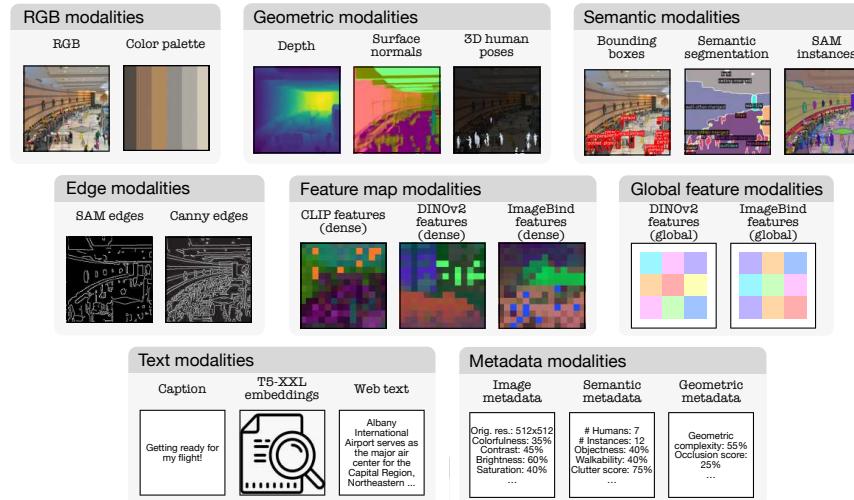
Metadata modalities

Image metadata Semantic metadata Geometric metadata

Orig. res.: 512x512
Colorfulness: 35%
Contrast: 45%
Brightness: 60%
Saturation: 40%
...

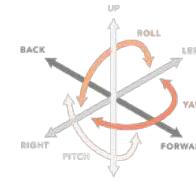
Humans: 7
Instances: 12
Objectness: 40%
Walkability: 40%
Clutter score: 75%
...
...

Geometric complexity: 55%
Occlusion score: 25%
...



Planned

Motion

IMU &
Motor control3D & space-level
fusion

Sketch

Video

Multi-view

Out-of-the-box evaluation

Method	Normals ↓	Depth ↓	Sem. seg. ↑	Inst. seg. ↑	IN1K kNN ↑	3D human KP ↓
Pseudo labelers	Omnidata [44]	22.5	0.68	✗	✗	✗
	M2F-B [19]	✗	✗	45.7	✗	✗
	SAM [47]	✗	✗	✗	32.9	✗
	DINOv2-B14 [65]	✗	✗	✗	✗	82.1 / 93.9
	ImageBind-H14 [33]	✗	✗	✗	✗	81.1 / 94.4
	4D-Humans [35]	✗	✗	✗	✗	81.3
	OASIS [18]	34.3	✗	✗	✗	✗
	MiDaS DPT [70]	✗	0.73	✗	✗	✗
	M2F-S [19]	✗	✗	44.6	✗	✗
	M2F-L [19]	✗	✗	48.0	✗	✗
HMR	HMR [43]	✗	✗	✗	✗	130.0
	UnifiedIO-B [59]	35.7	1.00	32.9	✗	✗
	UnifiedIO-L [59]	33.9	0.87	41.6	✗	✗
	UnifiedIO-XL [59]	31.0	0.82	44.3	✗	✗
	UnifiedIO 2-L [58]	37.1	0.96	38.9	✗	✗
	UnifiedIO 2-XL [58]	34.8	0.86	39.7	✗	✗
	UnifiedIO 2-XXL [58]	37.4	0.84	41.7	✗	✗
	4M-7 B [62]	21.9	0.71	43.3	✗	✗
Ours	B	21.7	0.71	42.5	15.9	73.1 / 89.7
	L	21.1	0.69	46.4	31.2	77.0 / 91.9
Ours	XL	20.6	0.69	48.1	32.0	78.3 / 92.4
		20.8	0.68	48.1		92.0
Tokenizer bound ⁱⁱⁱ	4.0	0.06	90.5	91.2	80.2 / 93.0	17.5

- The multitask learning aspect works well-> one effective network for 100s of tasks.

Out-of-the-box evaluation

Method	Normals ↓	Depth ↓	Sem. seg. ↑	Inst. seg. ↑	IN1K kNN ↑	3D human KP ↓
Pseudo labelers						
Omnidata [44]	22.5	0.68	x	x	x	x
M2F-B [19]	x	x	45.7	x	x	x
SAM [47]	x	x	x	32.9	x	x
DINOv2-B14 [65]	x	x	x	x	82.1 / 93.9	x
ImageBind-H14 [33]	x	x	x	x	81.1 / 94.4	x
4D-Humans [35]	x	x	x	x	x	81.3
OASIS [18]	34.3	x	x	x	x	x
MiDaS DPT [70]	x	0.73	x	x	x	x
M2F-S [19]	x	x	44.6	x	x	x
M2F-L [19]	x	x	48.0	x	x	x
HMR [43]	x	x	x	x	x	130.0
UnifiedIO-B [59]	35.7	1.00	32.9	x	x	x
UnifiedIO-L [59]	33.9	0.87	41.6	x	x	x
UnifiedIO-XL [59]	31.0	0.82	44.3	x	x	x
UnifiedIO 2-L [58]	37.1	0.96	38.9	x	x	x
UnifiedIO 2-XL [58]	34.8	0.86	39.7	x	x	x
UnifiedIO 2-XXL [58]	37.4	0.84	41.7	x	x	x
4M-7 B [62]	21.9	0.71	43.3	x	x	x
Ours B	21.7	0.71	42.5	15.9	73.1 / 89.7	108.3
4M-7 L [62]	21.5	0.69	47.2	x	x	x
Ours L	21.1	0.69	46.4	31.2	77.0 / 91.9	97.4
4M-7 XL [62]	20.6	0.69	48.1	x	x	x
Ours XL	20.8	0.68	48.1	32.0	78.3 / 92.4	92.0
Tokenizer bound*	4.0	0.06	90.5	91.2	80.2 / 93.0	17.5

- The multitask learning aspect works well-> one effective network for 100s of tasks.
- Long-way to go in terms of transfer/emergence.

Multimodal transfer

Method	NYUv2-S		Hypersim		ARKitScenes	
	RGB	RGB-D	RGB	RGB-D	RGB	RGB-D
4M-7 B	56.6	57.5	40.2	43.9	40.3	46.5
Ours B	58.7	59.7	38.6	46.4	42.4	48.1
4M-7 L	61.2	61.4	48.7	50.5	46.8	49.5
Ours L	61.8	61.8	47.3	50.7	47.0	50.1
4M-7 XL	62.1	61.2	48.6	51.0	48.1	50.1
Ours XL	63.9	63.9	48.6	52.5	48.4	51.3

Unimodal transfer

Method	Pre-training data	Enc. param.	IN1K	ADE20K	NYUv2-D	ARKS
MAE B [38]	IN1K			84.2	46.1	89.1
DeiT III B [83]	IN21K			85.4	49.0	87.4
MultiMAE B [7]	IN1K			84.0	46.2	89.0
DINOv2 B [63]	LVD142M	86M	85.3	51.6	92.2	38.1
4M-7 B [62]	CC12M			84.5	50.1	92.0
4M-7 B (Ours)	COYO			84.4	49.4	91.4
Ours B	CC12M+COYO+C4			84.5	50.1	90.8
MAE L [38]	IN1K			86.8	51.8	93.6
DeiT III L [83]	IN21K			87.0	52.0	89.6
DINOv2 L [65]	LVD142M	303M	86.7	53.4	94.1	42.8
4M-7 L [62]	CC12M			86.6	53.4	94.4
4M-7 L (Ours)	COYO			86.7	53.5	94.3
Ours L	CC12M+COYO+C4			86.5	53.4	93.7
DINOv2 g [65]	LVD142M	1.1B	88.0	58.7	92.5	45.3
4M-7 XL [62]	CC12M			87.0	55.0	96.1
4M-7 XL (Ours)	COYO	1.2B	87.1	56.1	96.5	47.3
Ours XL	CC12M+COYO+C4		87.1	56.0	96.5	48.4

looking correct vs being correct

Text Prompt: a giant gorilla at the top of the Empire State building.

4M without co-training with LLM/T5

4M with co-training with LLM/T5

Reasoning &
Test-Time
Compute

Solving a task via coding

Query: How many muffins can each kid have for it to be fair?

Generated Code

```
def execute_command(image):
    image_patch = ImagePatch(image)
    muffin_patches = image_patch.find("muffin")
    kid_patches = image_patch.find("kid")
    return str(len(muffin_patches) // len(kid_patches))
```

Execution

```
muffin_patches =  
image_patch.find("muffin")
```



```
kid_patches =  
image_patch.find("kid")
```


► len(muffin_patches)=8
► len(kid_patches)=2

► 8//2 = 4

Result: 4

Query: Drink with zero alcohol


```
def execute_command(image):
    image_patch = ImagePatch(image)
    drink_patches = image_patch.find("drink")
    for drink_patch in drink_patches:
        drink_name = drink_patch.simple_query("What is this?")
        alcoholic = lm_query(f"Does the {drink_name} have alcohol?")
        if alcoholic == "no":
            return drink_patch
    return None
```

► drink_patches=

► drink_name = 'tullamore dew'
► alcoholic = 'yes'

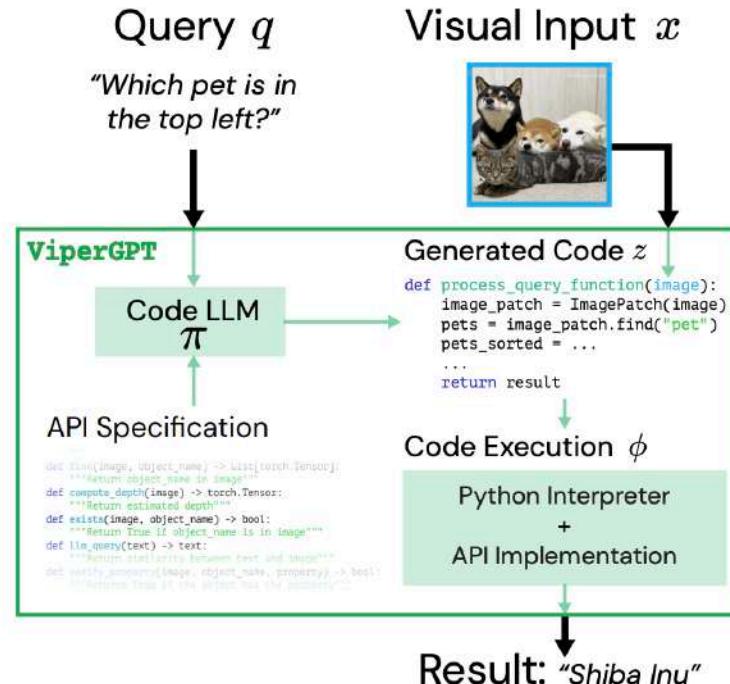
► drink_name = 'bacardi'
► alcoholic = 'yes'

► drink_name = 'gin'
► alcoholic = 'yes'

► drink_name = 'dr pepper'
► alcoholic = 'no'

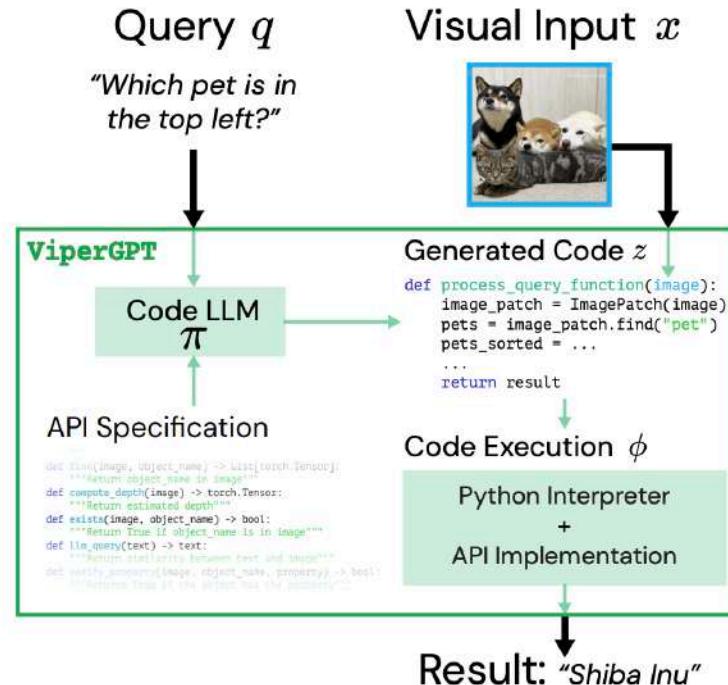
Result:

Solving a task via coding



■ ViperGPT: ViperGPT: Visual Inference via Python Execution for Reasoning
<https://viper.cs.columbia.edu/>

Solving a task via coding



Query: pizza front

Generated code

```

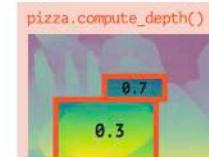
def execute_command(image):
    image_patch = ImagePatch(image)
    pizza_patches = image_patch.find("pizza")
    pizza_patches.sort(key=lambda pizza: pizza.compute_depth())
    patch_return = pizza_patches[0]
    return patch_return
  
```

In:

Execution

```

pizza_patches = image_patch.find("pizza")
> pizza_patches= {List[ImagePatch]}
  
```



```

pizza.compute_depth()
patch_return = pizza_patches[0]
return patch_return
  
```


Result:

Solving a task via coding

```

def incr_list(l: list):
    """Return list with elements incremented by 1.
    >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    """
    return [i + 1 for i in l]

def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.

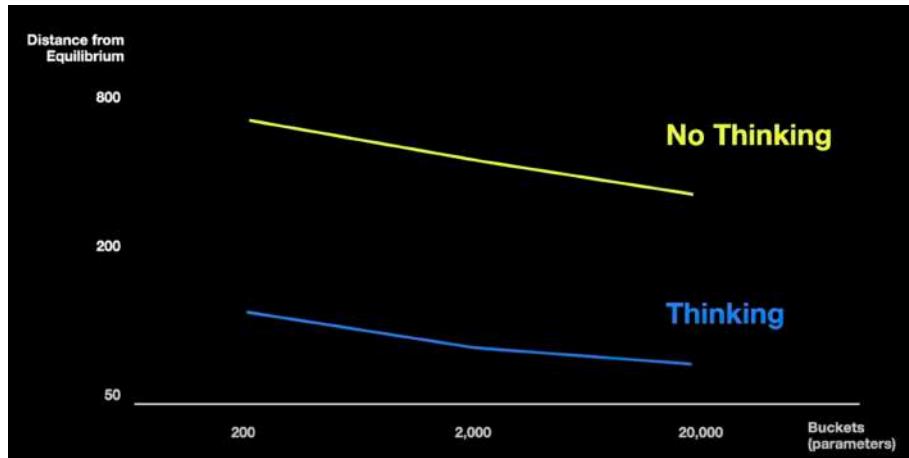
    Examples
    solution([5, 8, 7, 1]) =>12
    solution([3, 3, 3, 3]) =>9
    solution([30, 13, 24, 321]) =>0
    """
    return sum(lst[i] for i in range(0, len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

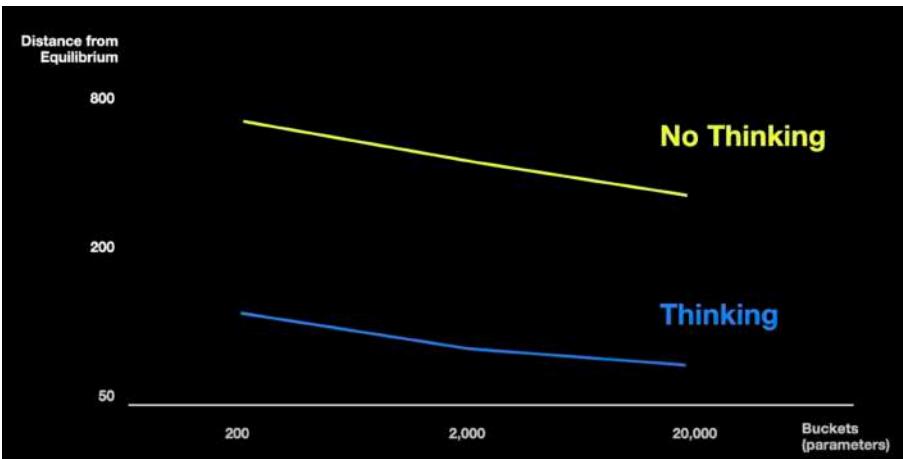
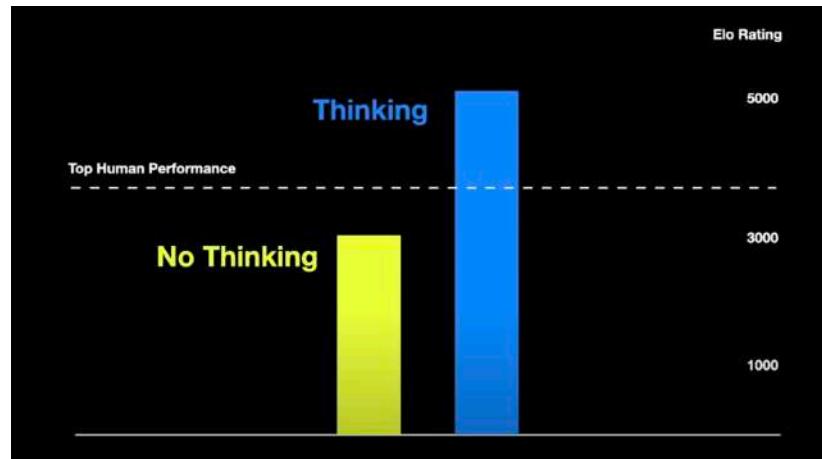
def encode_cyclic(s: str):
    """
    returns encoded string by cycling groups of three characters.
    """
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[-1:] + group[:-1]) if len(group) == 3 else group for group in groups]
    return ''.join(groups)

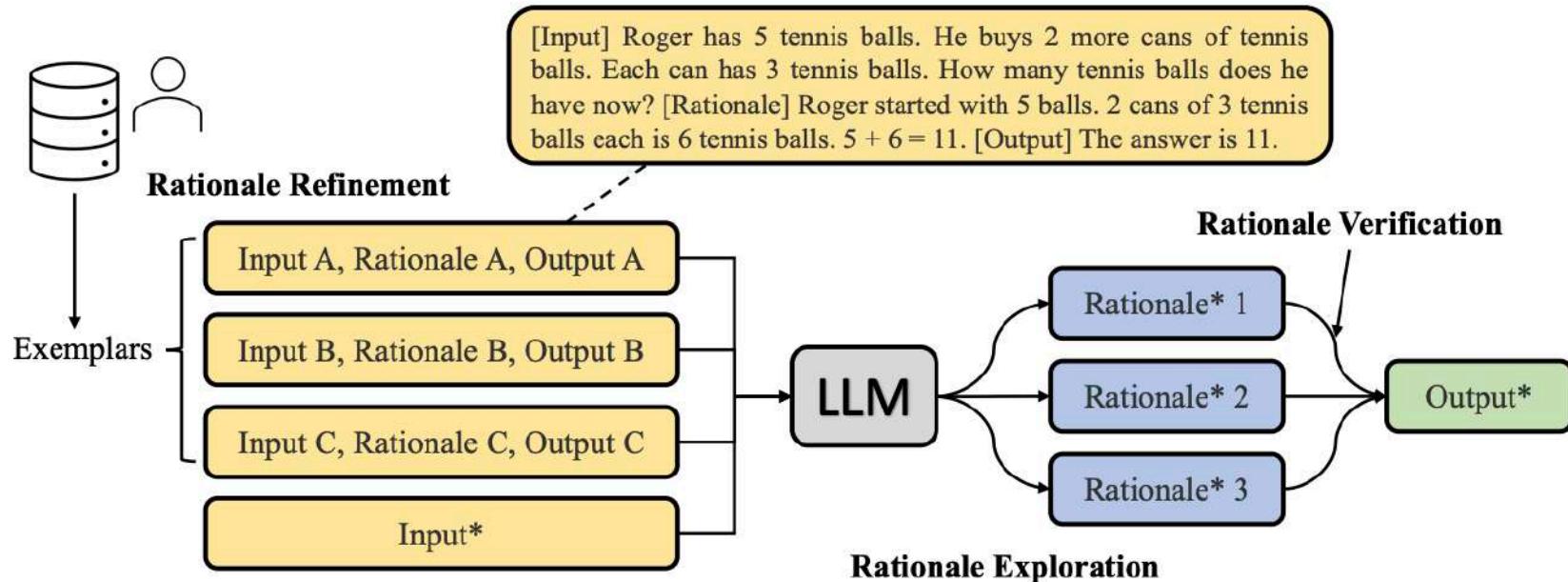
def decode_cyclic(s: str):
    """
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    """
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1:] + group[:-1]) if len(group) == 3 else group for group in groups]
    return ''.join(groups)

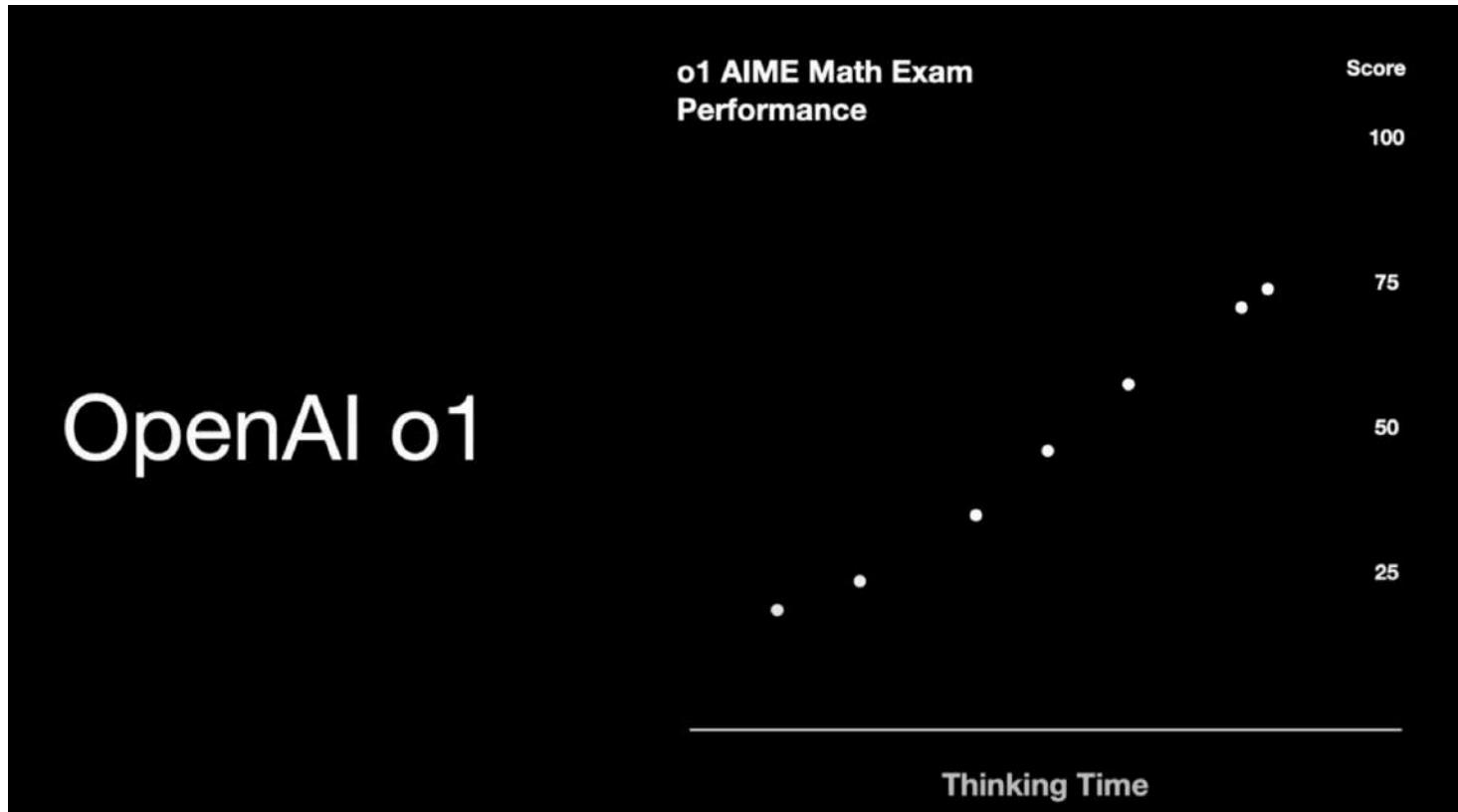
```

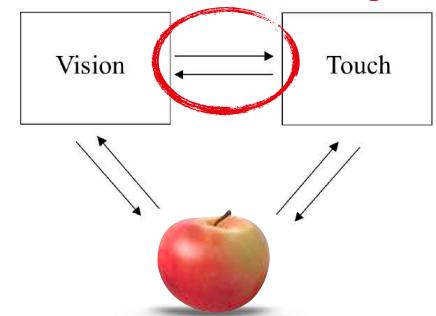
Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not programmatically copied from existing sources. Random problems and samples can be found in Appendix B.







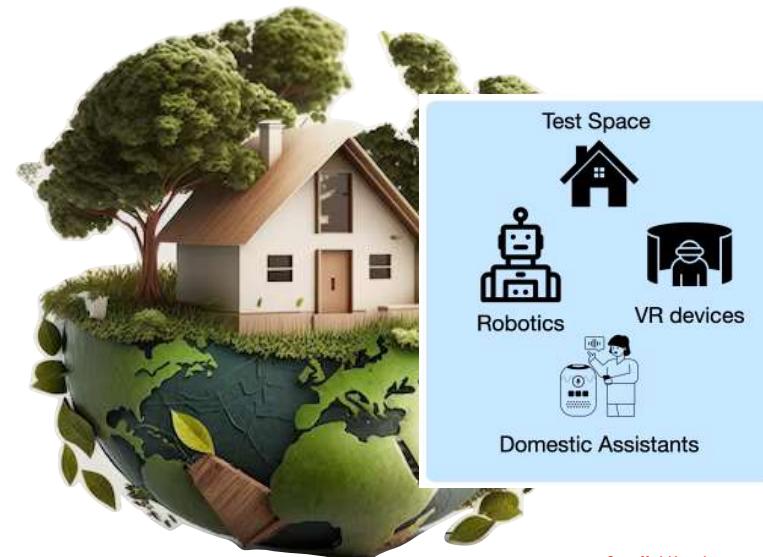


Cross-Modal Learning

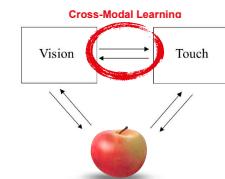
Multimodality as self-Supervision

Learn from the entire world/internet
with few modalities

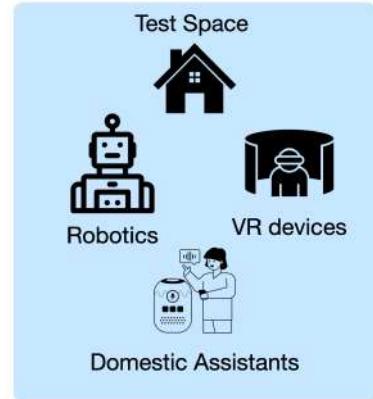
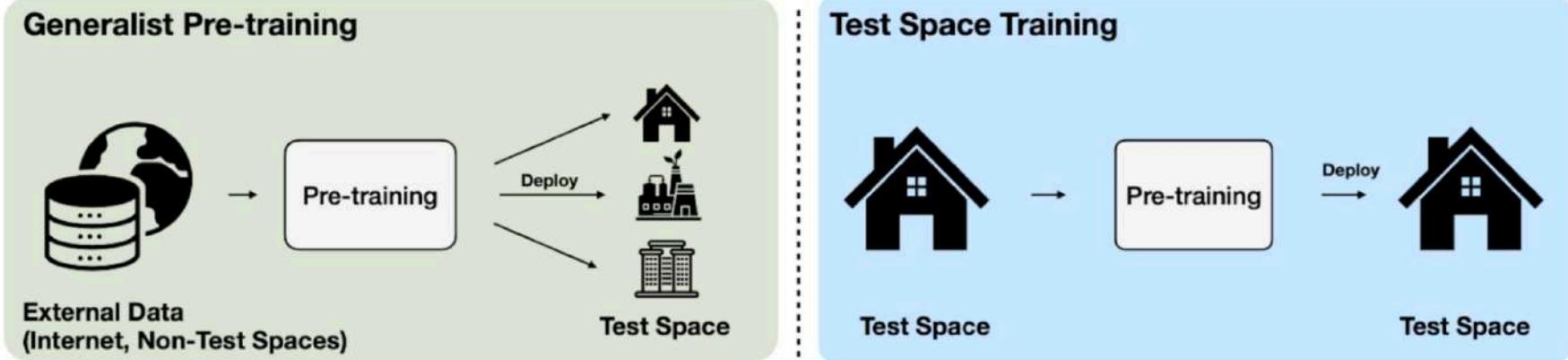
Learn from the test space only
with rich modalities



- Limit the world to the test space and “overfit” to it.
- Can we perfectly solve vision there?

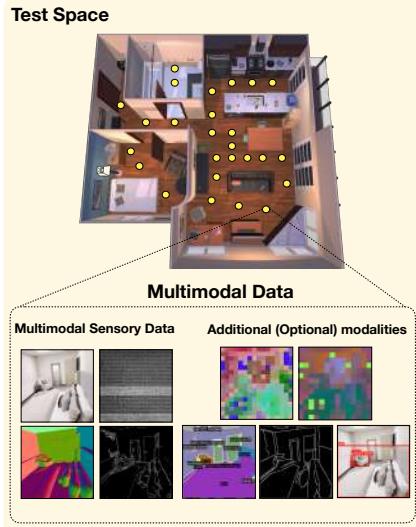


- Test-Space Training (TST): Investigates the role of
 - 1) **specialization**, in contrast to generalization.
 - 2) **internet data** in training (multimodal) FMs.

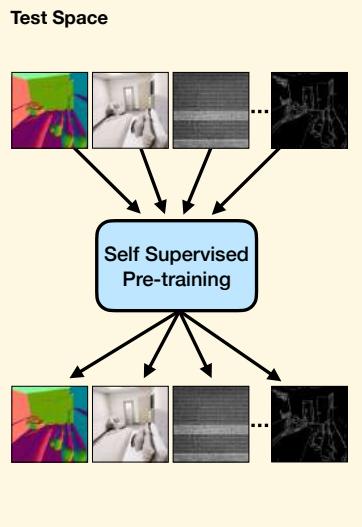


Test-Space Training

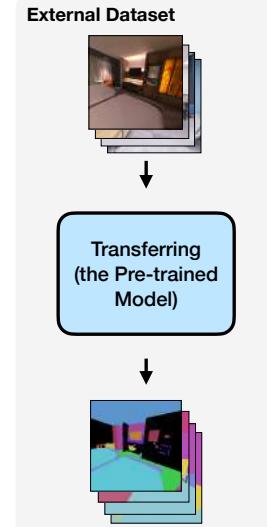
1. Data Collection



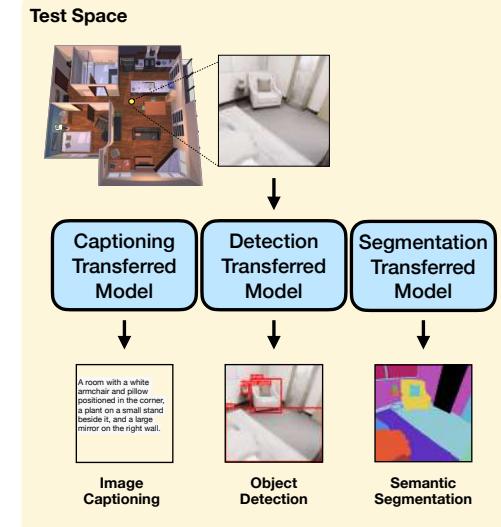
2. Pre-training



3. Transfer



4. Deployment



Experimental results

In Scannet++, Replica, THOR

On semantic segmentation, detection, captioning.

Scannet++¹

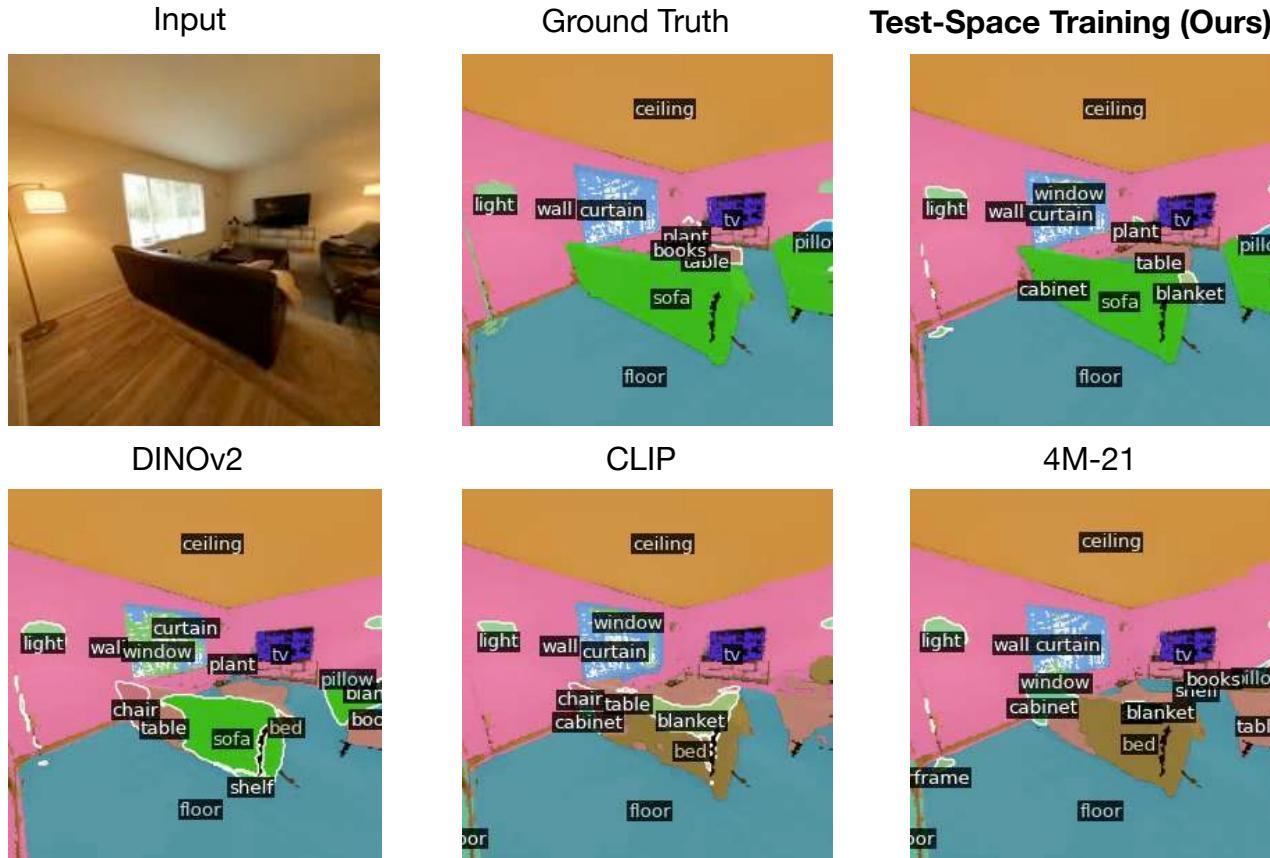
DSLR Image

1mm-resolution Laser Scan

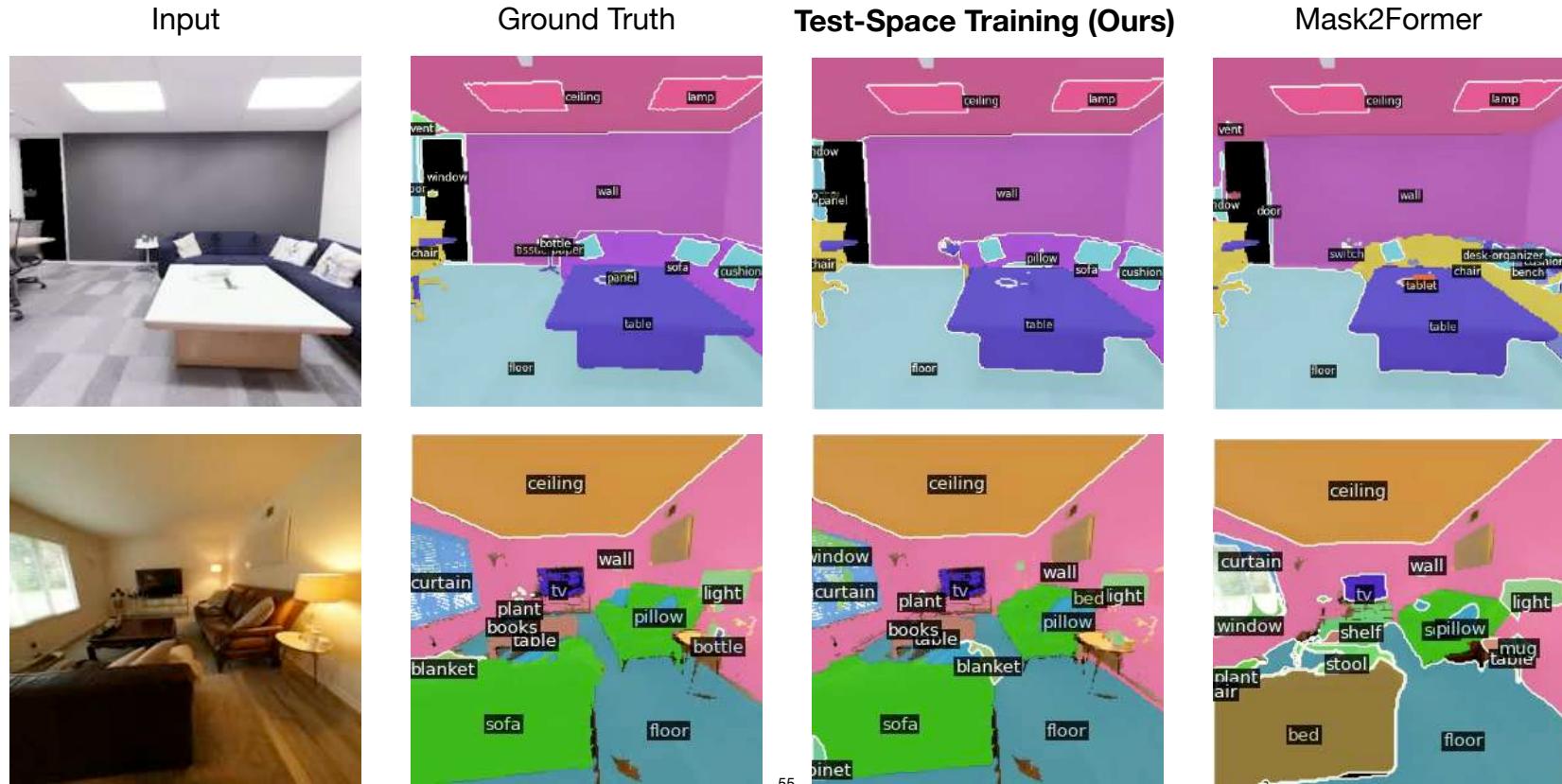
iPhone RGB-D

1. Yeshwanth et al. 2023

Semantic Segmentation Vs. internet-based generalists



Semantic Segmentation Vs. task specialists



Detection

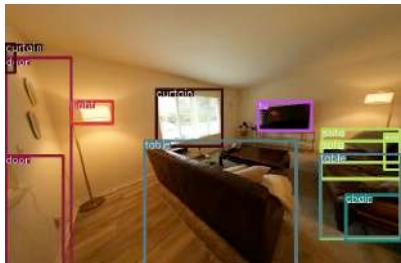
Input

Ground Truth

Test-Space Training (Ours)

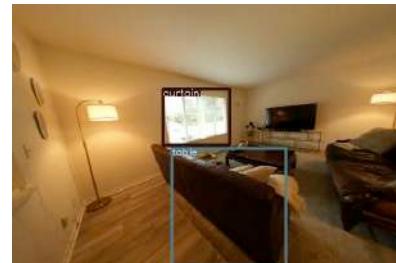
CLIP

4M-21



ViTDet

Scratch

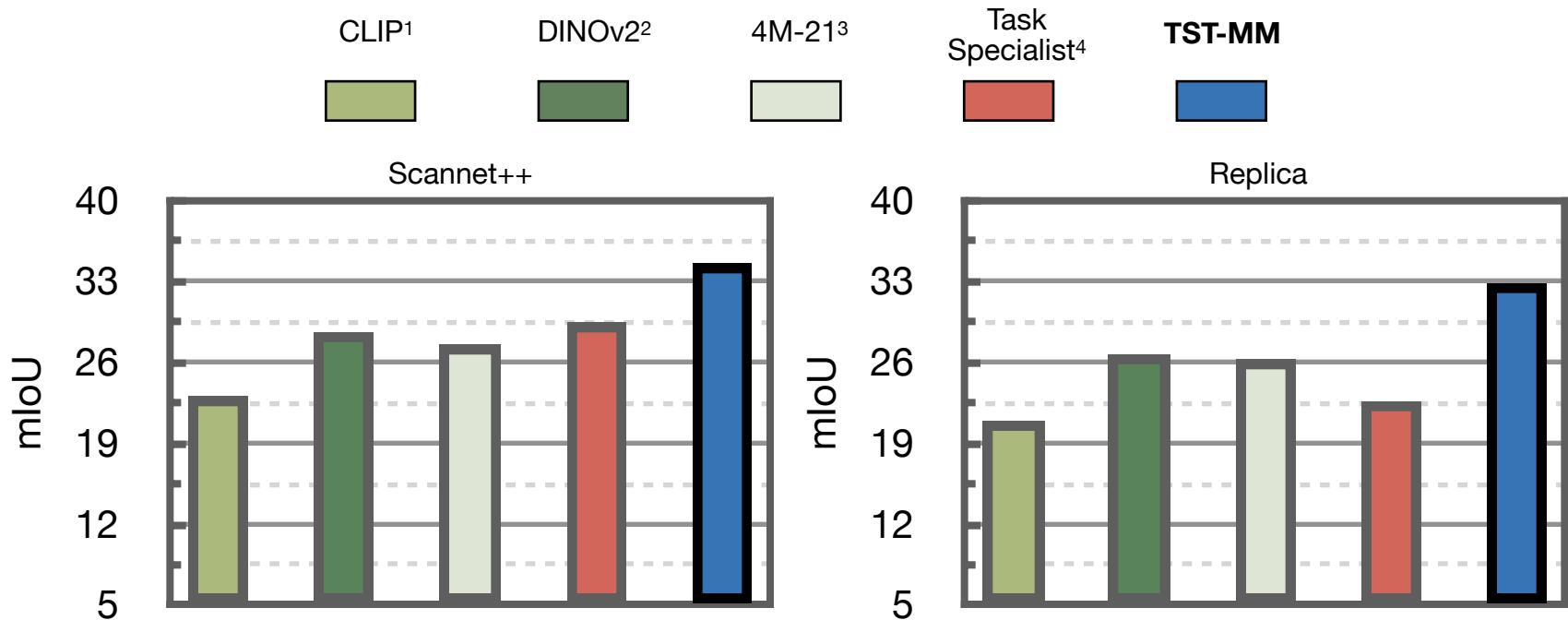


DINOv2

Quantitative comparison

Semantic Segmentation

- TST outperforms internet based generalists^[1,2,3], and task specialists^[4,5].



1. Radford et al. 2021

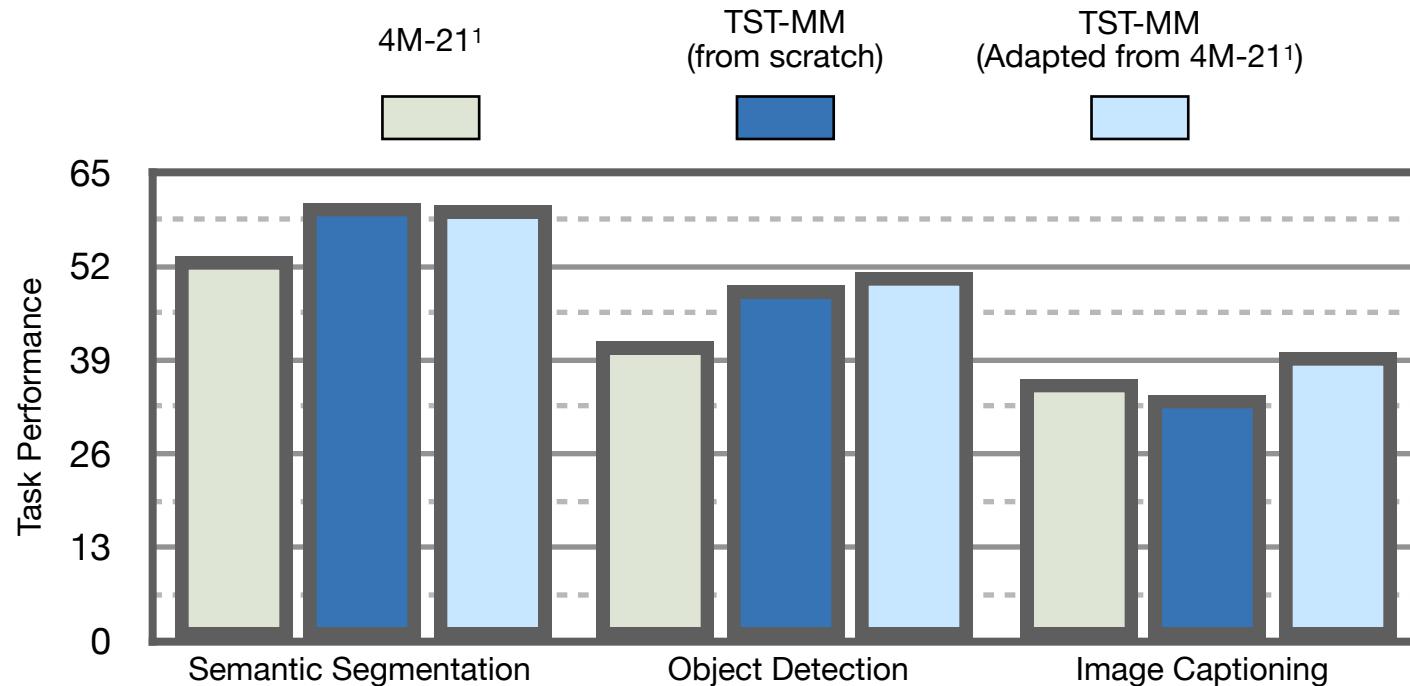
2. Squab et al. 2023

3. Bachmann*, Kar*, Mizrahi* et al. 2024

4. Cheng et al. 2022

Adaptation

Adapt a pre-trained generalist vs. train from scratch

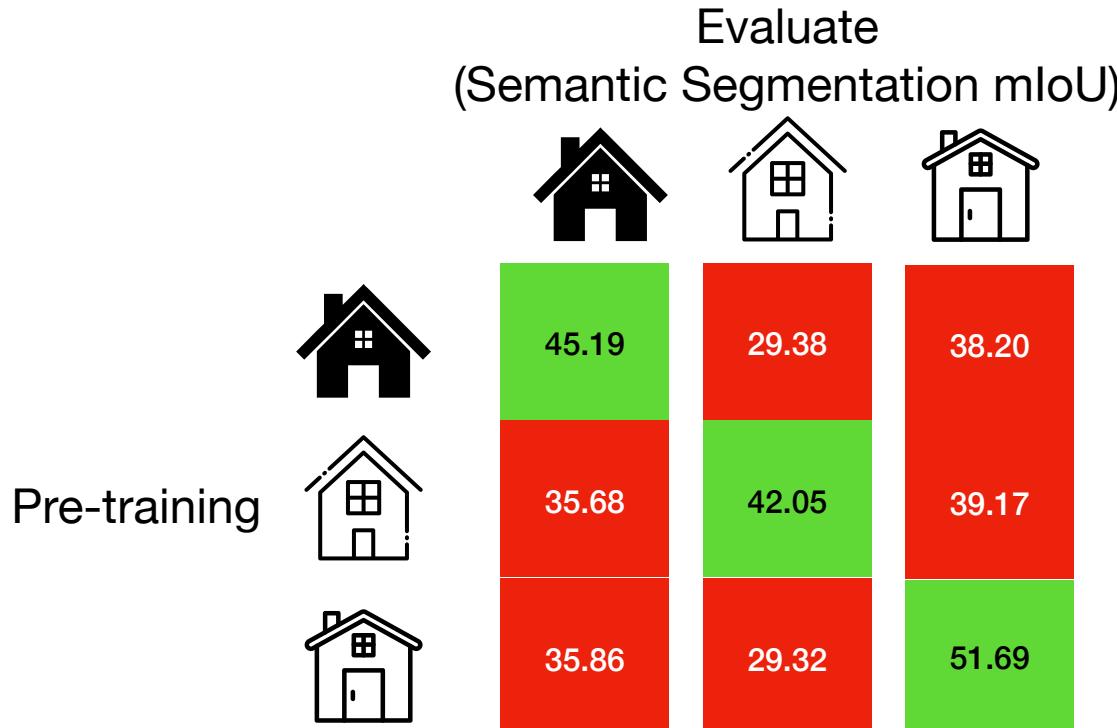


Analysis

Analysis 1. Is “specialization” actually happening?

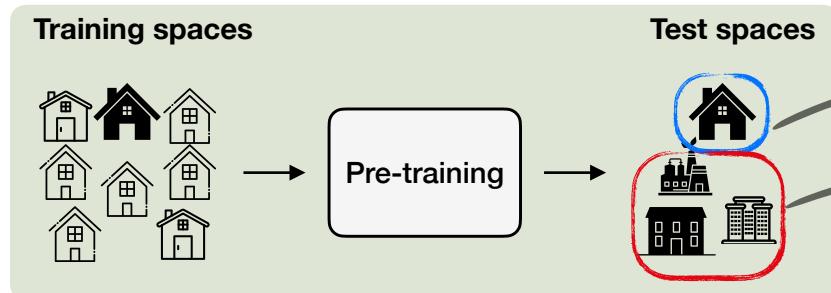
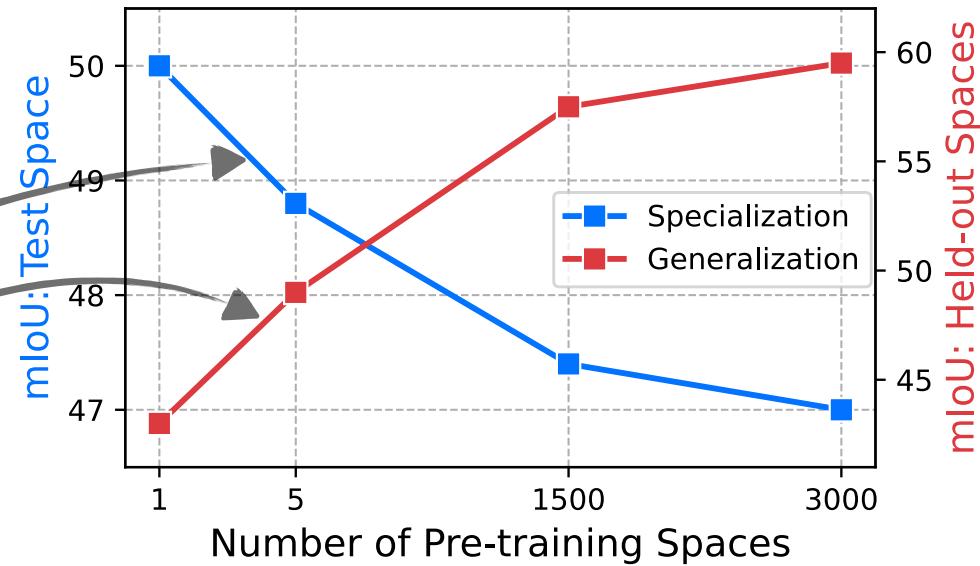
Analysis

Analysis 1. Is “specialization” actually happening?



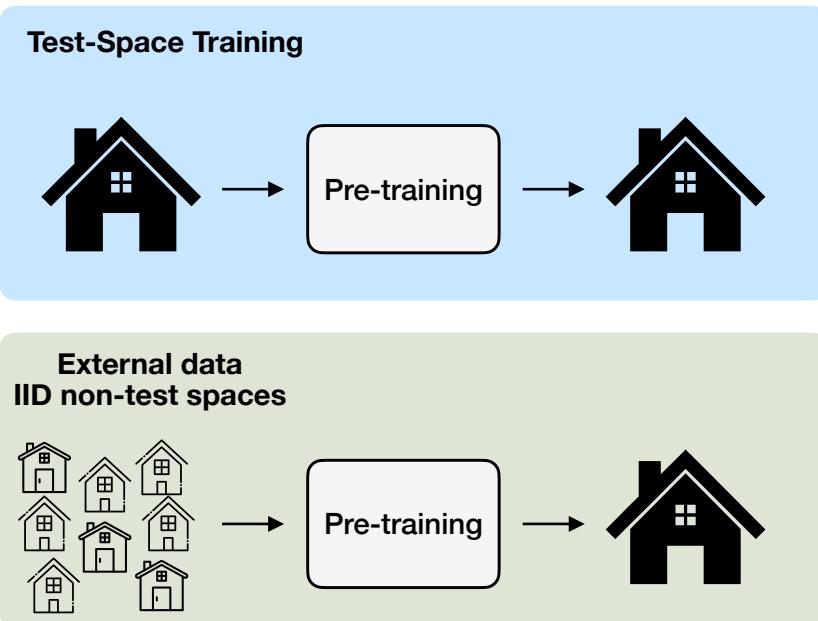
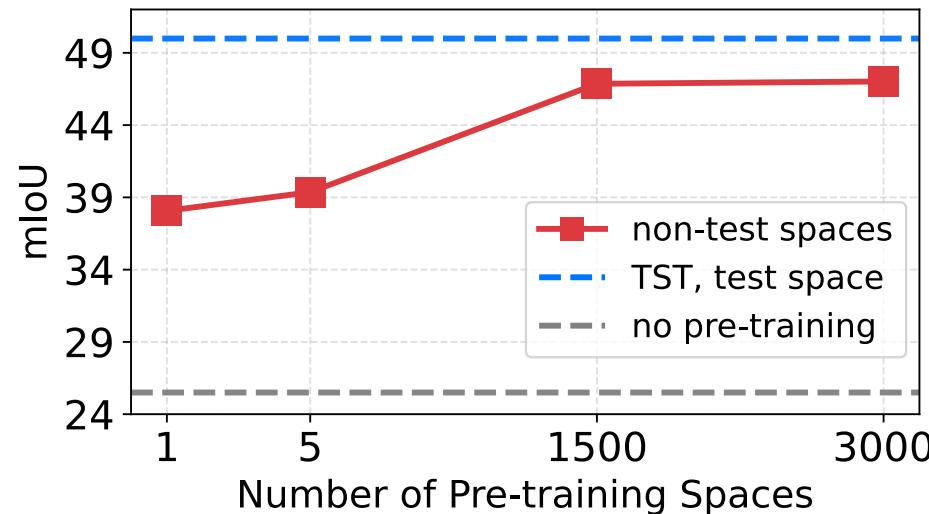
Analysis

Analysis 2. Specialization-generalization tradeoff



Analysis

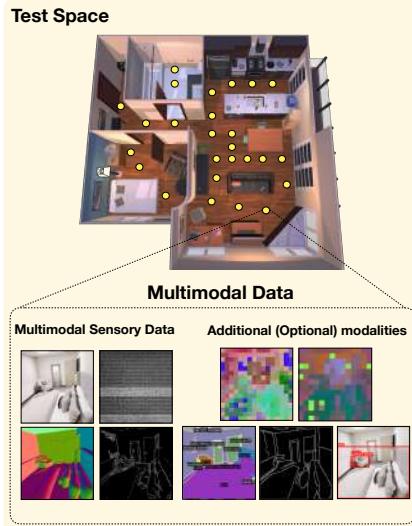
Analysis 3. How much external data is the test-space data worth?



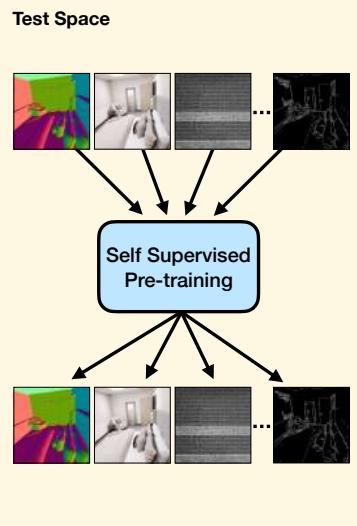
Analysis

Analysis 4. What about other self-supervised objectives?

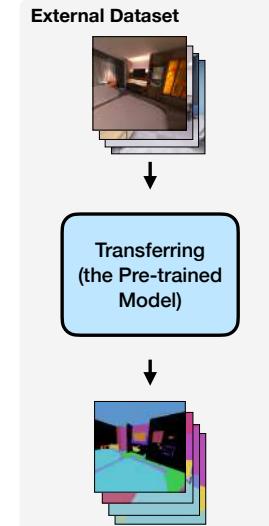
1. Data Collection



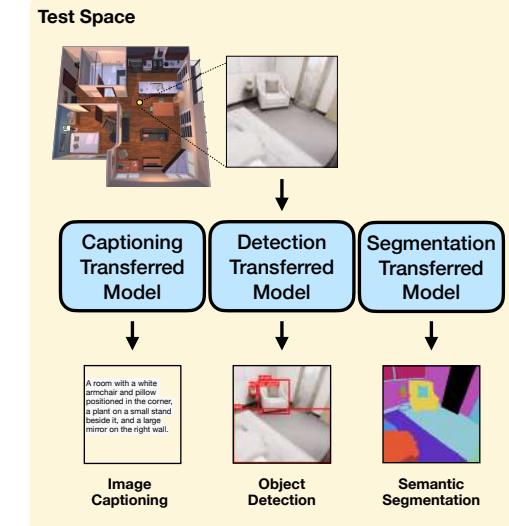
2. Pre-training



3. Transfer

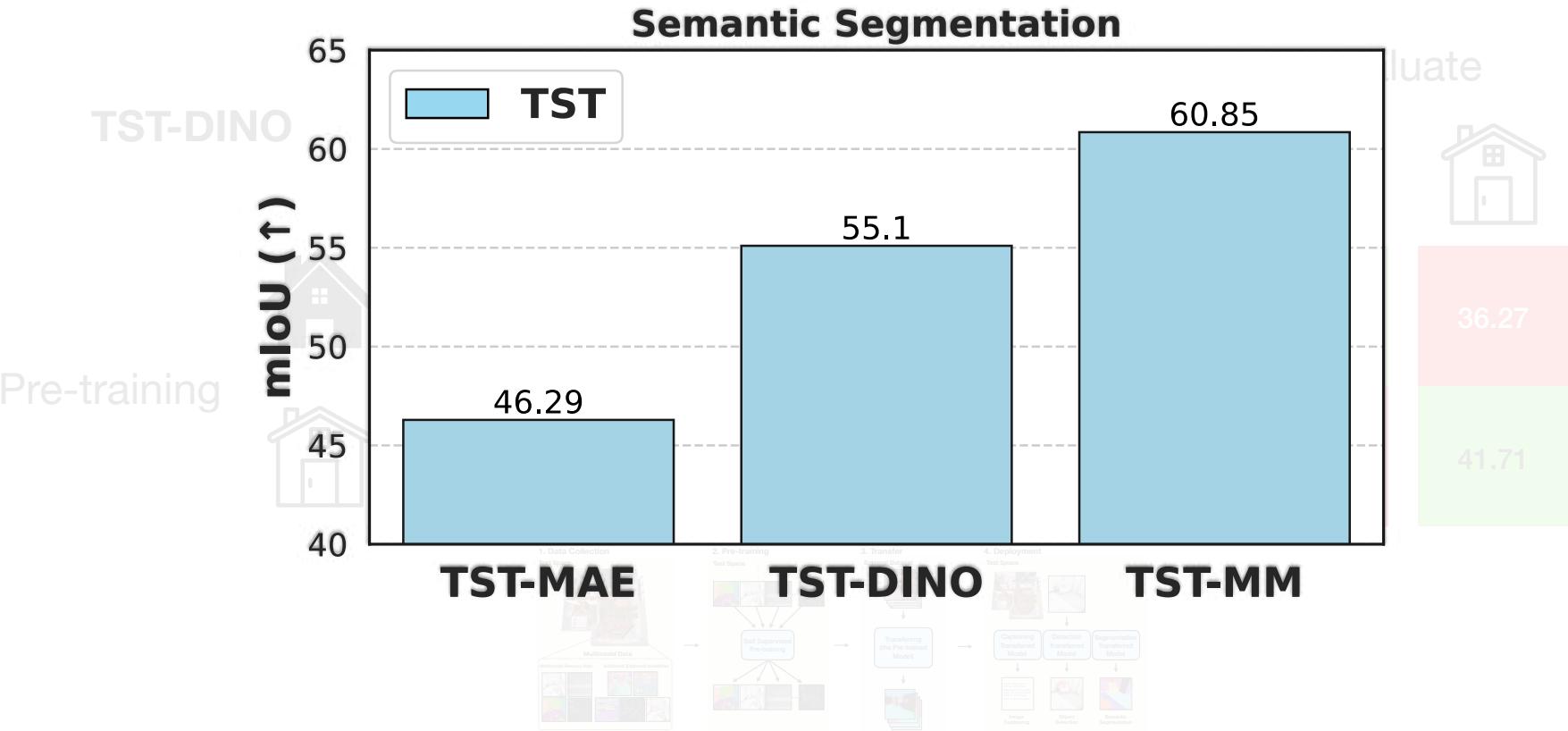


4. Deployment



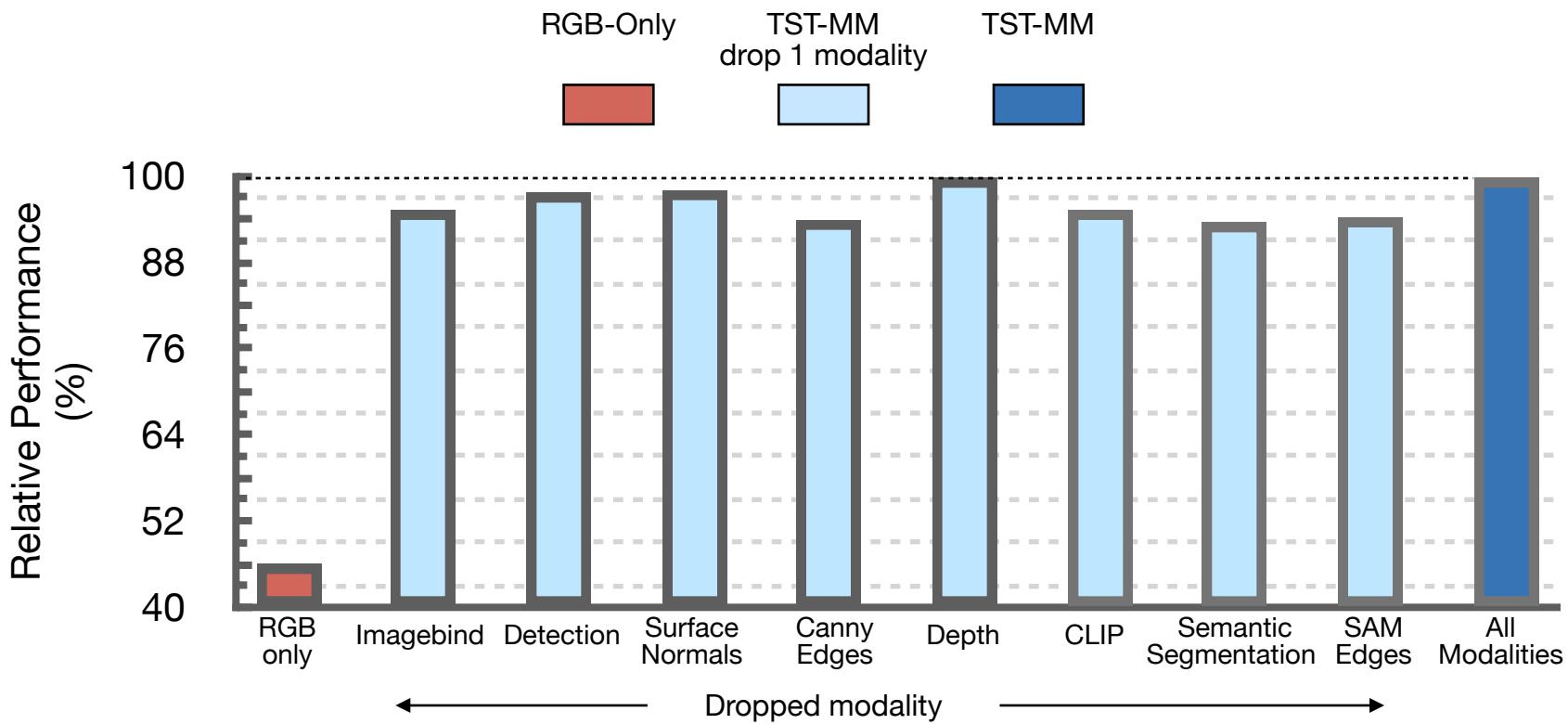
Analysis

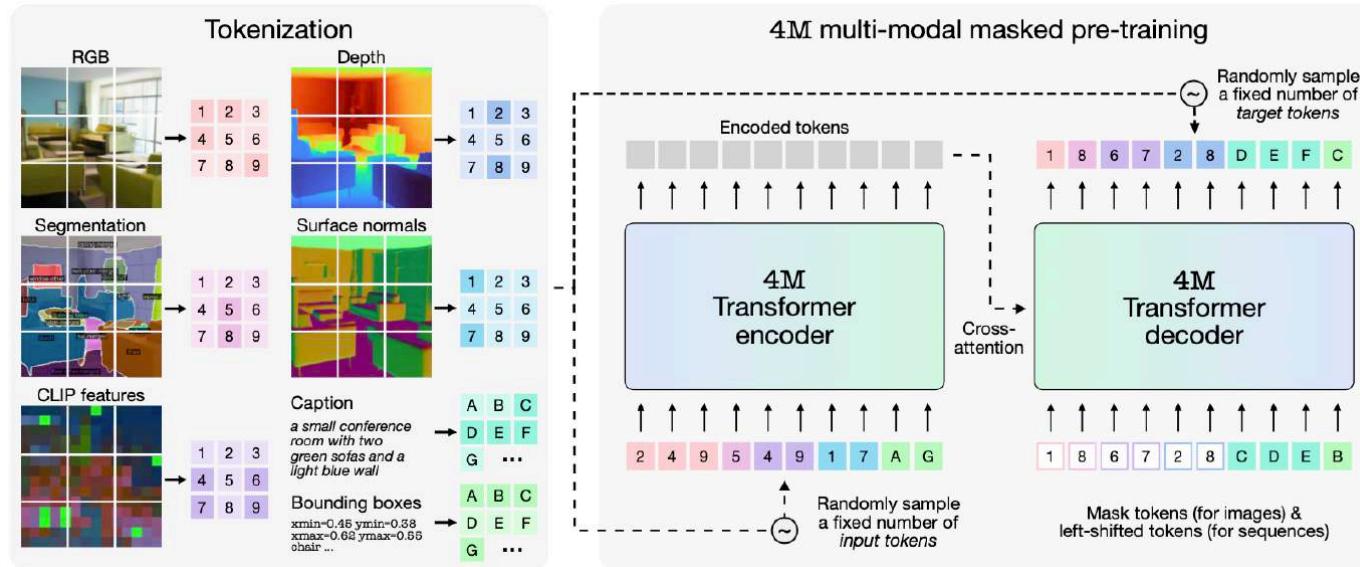
Analysis 4. What about other self-supervised objectives?



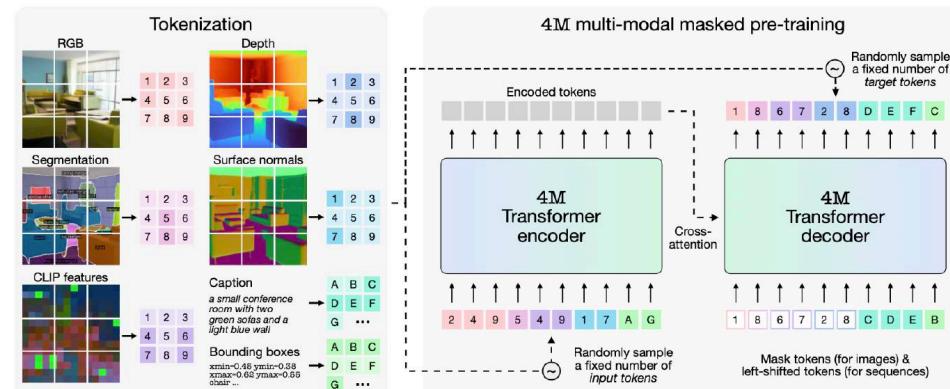
Analysis

Analysis 5. Is one modality doing most of the job?

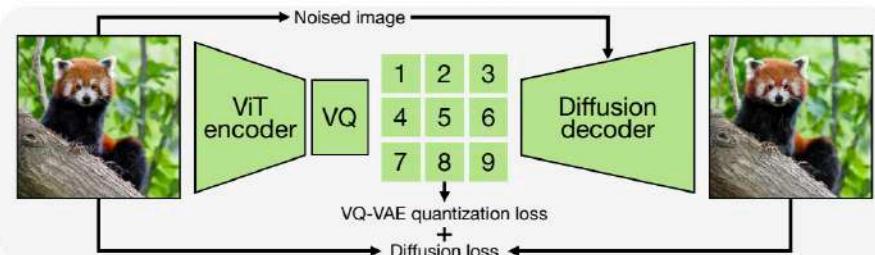




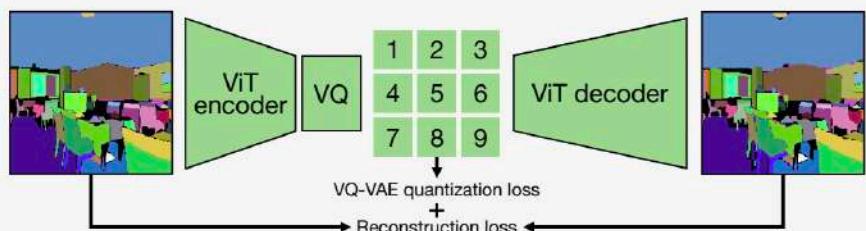
Tokenization



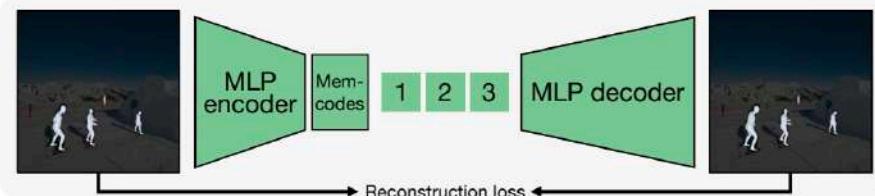
Spatial discrete VAE with diffusion decoder: RGB, normal, depth, edges



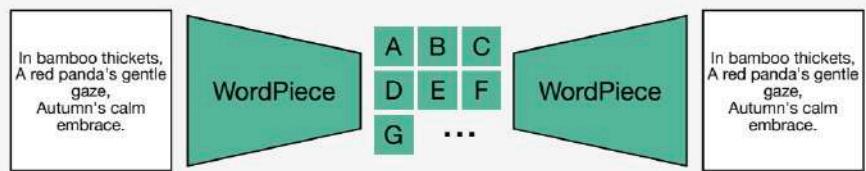
Spatial discrete VAE: Segmentation, CLIP, DINOv2, ImageBind, SAM inst.



MLP discrete VAE: Human poses, DINOv2 & ImageBind global tokens



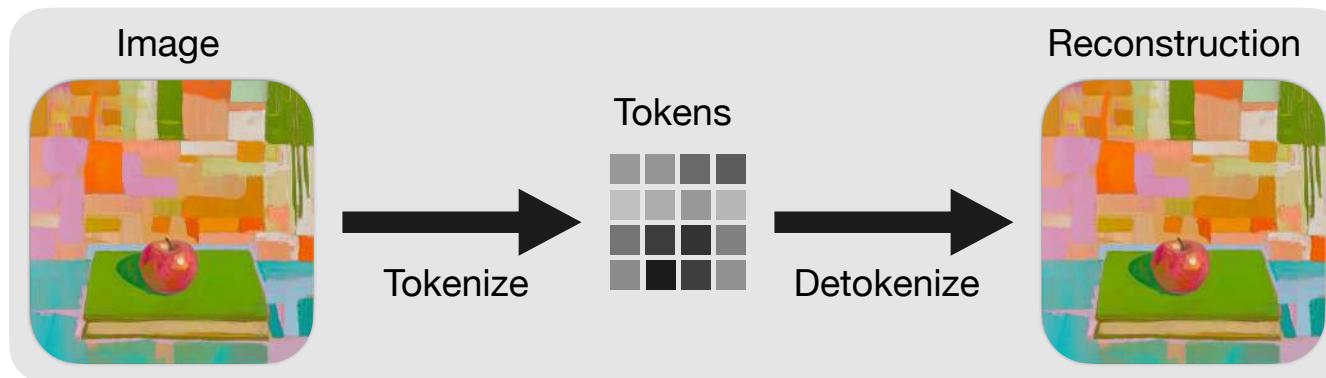
Sequence tokenizer: Text, bounding boxes, metadata, color palette



Token-based generation

Common way to perform generation:

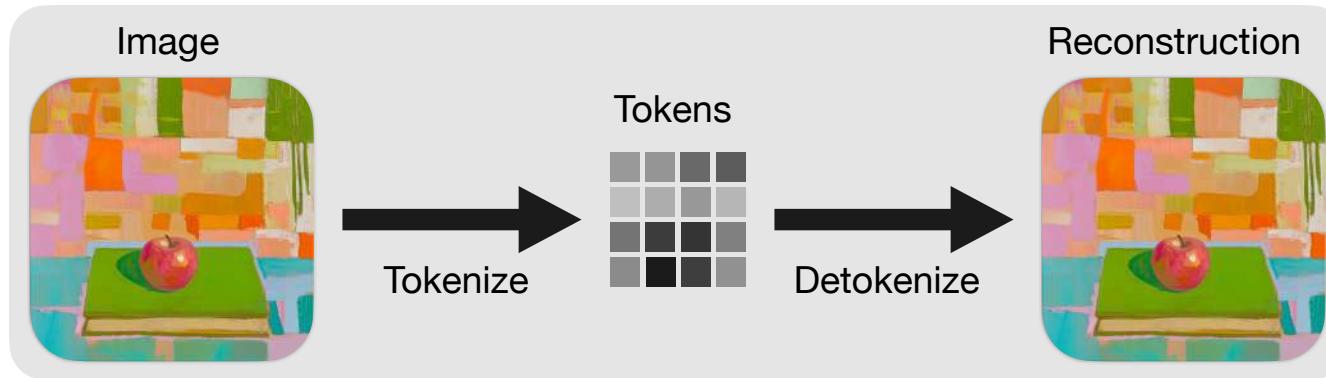
Stage 1: Train *tokenizer* with autoencoding objective



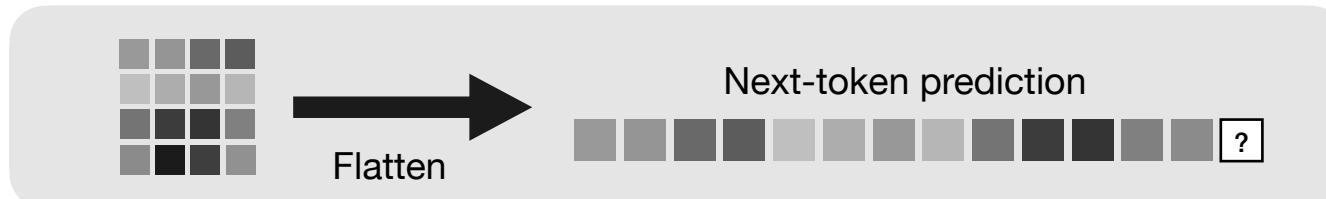
Token-based generation

Common way to perform generation:

Stage 1: Train *tokenizer* with autoencoding objective

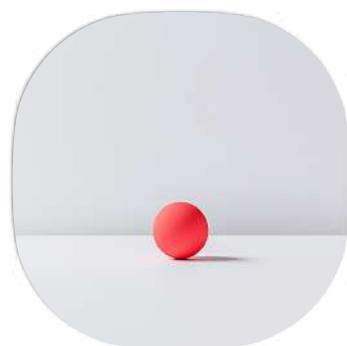


Stage 2: Perform *next-token prediction* on image tokens

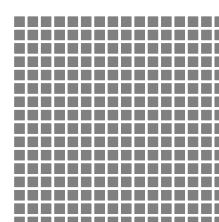


Token-based generation

Common 2D grid tokenizers images represented with **a fixed number of tokens, regardless of complexity.**

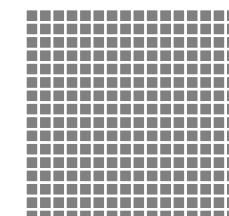


e.g. 256x256 pixels



e.g. 16x16 tokens

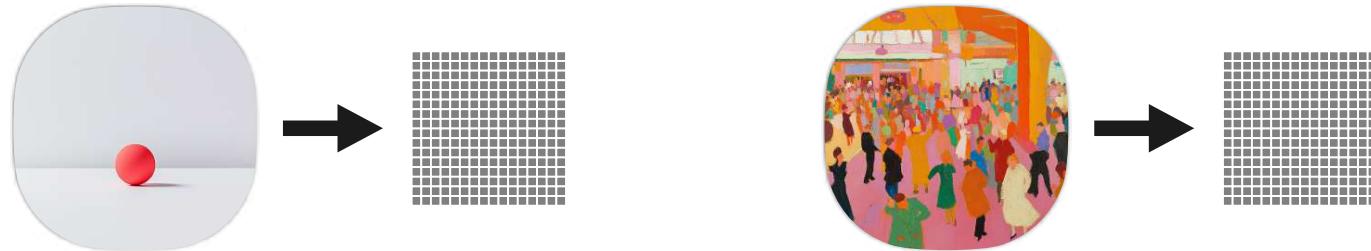
e.g. 256x256 pixels



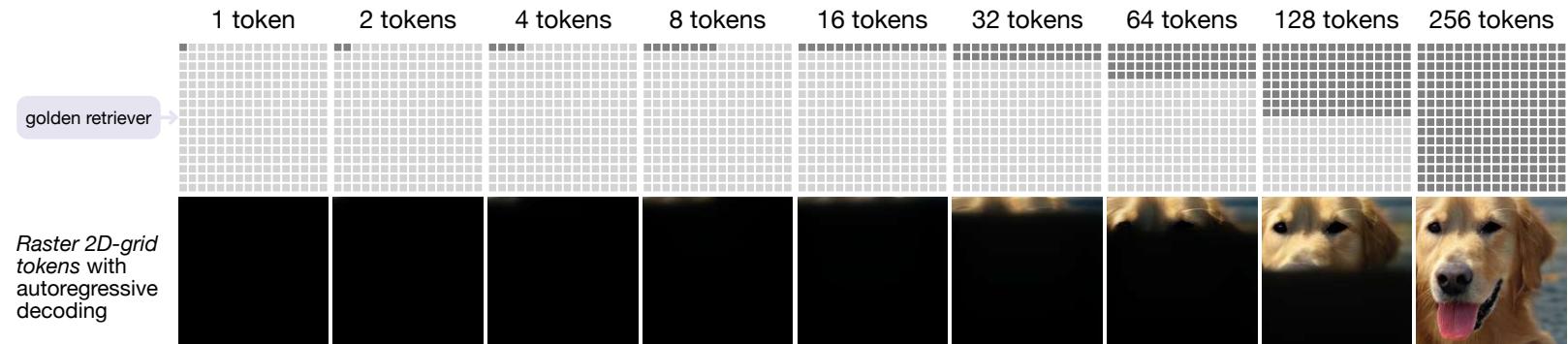
e.g. 16x16 tokens

Token-based generation

Common 2D grid tokenizers images represented with **a fixed number of tokens, regardless of complexity.**



Autoregressive generation is performed ~patch-by-patch.



Abstraction — Compression

Do we need to model **every detail, all the time?**

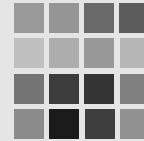
golden retriever

FlexTok

*Flexible-length
1D token
sequences with
autoregressive
decoding*

FlexTok overview

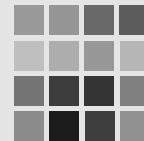
Classical 2D grid tokenizers



Tokens represent
local image
information

FlexTok overview

Classical 2D grid tokenizers



Tokens represent
local image
information

FlexTok 1D flexible length tokenizer

High-level
semantics

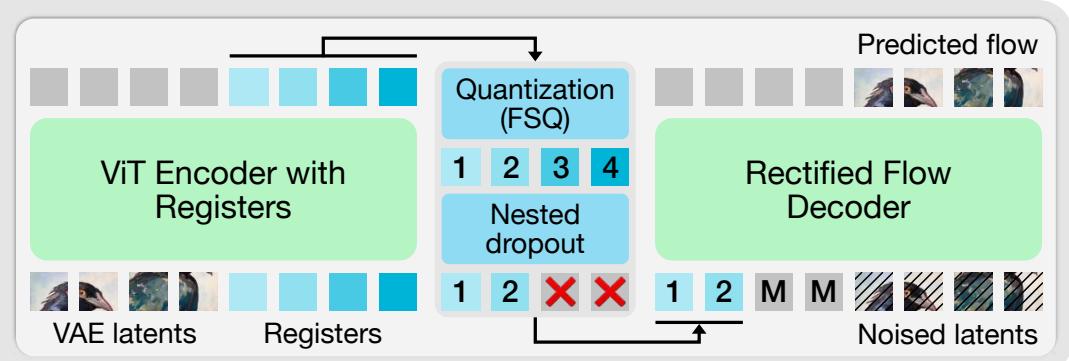
Details

FlexTok method

Overview

Stage 1

FlexTok tokenizer training

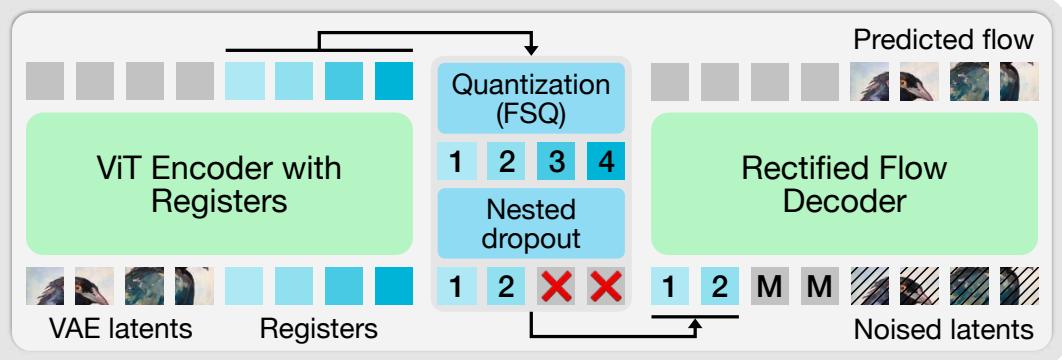


FlexTok method

Overview

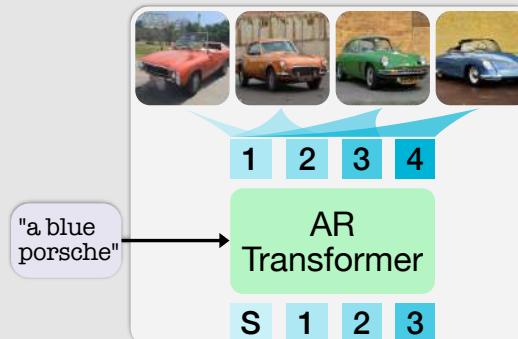
Stage 1

FlexTok tokenizer training



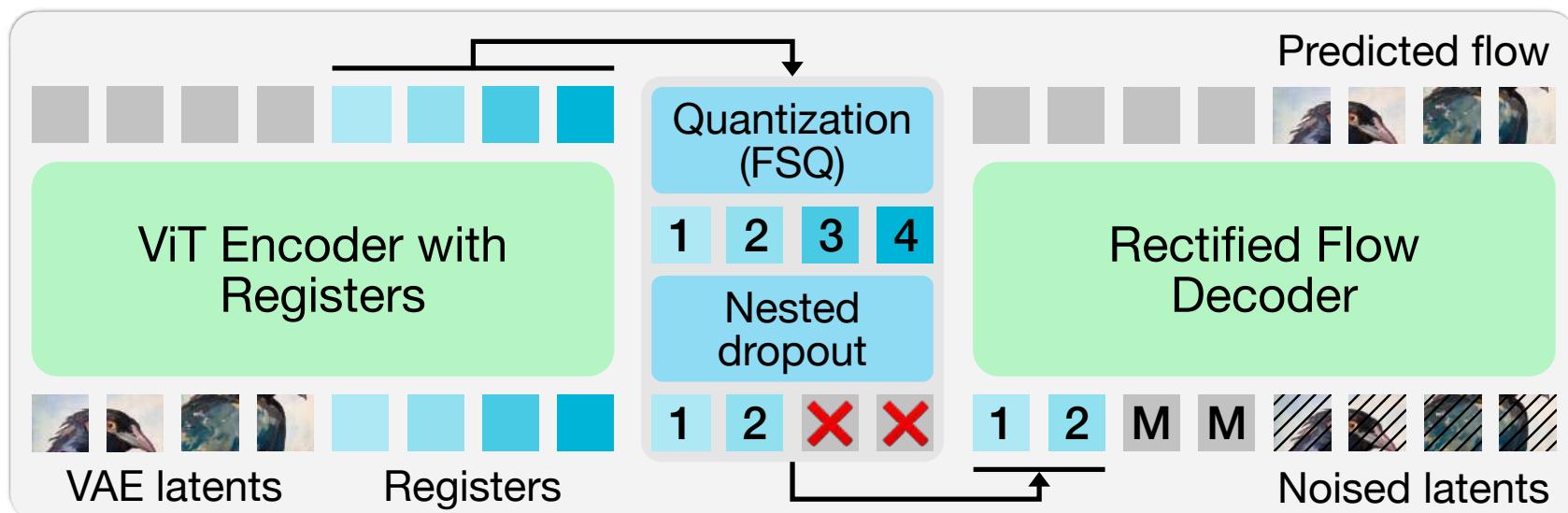
Stage 2

Autoregressive generation
using FlexTok tokens



FlexTok method

Stage 1: Tokenizer training



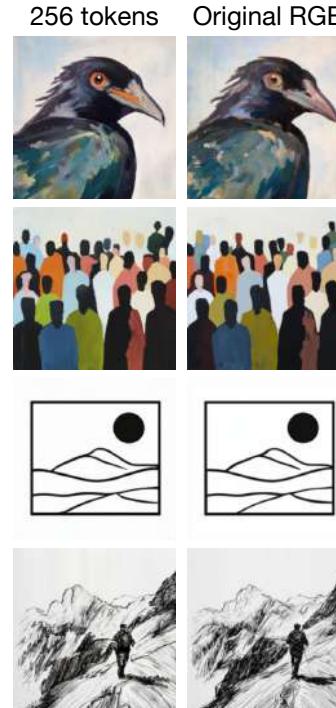
FlexTok reconstruction

Specify a coarse-to-fine "visual vocabulary"

Original RGB

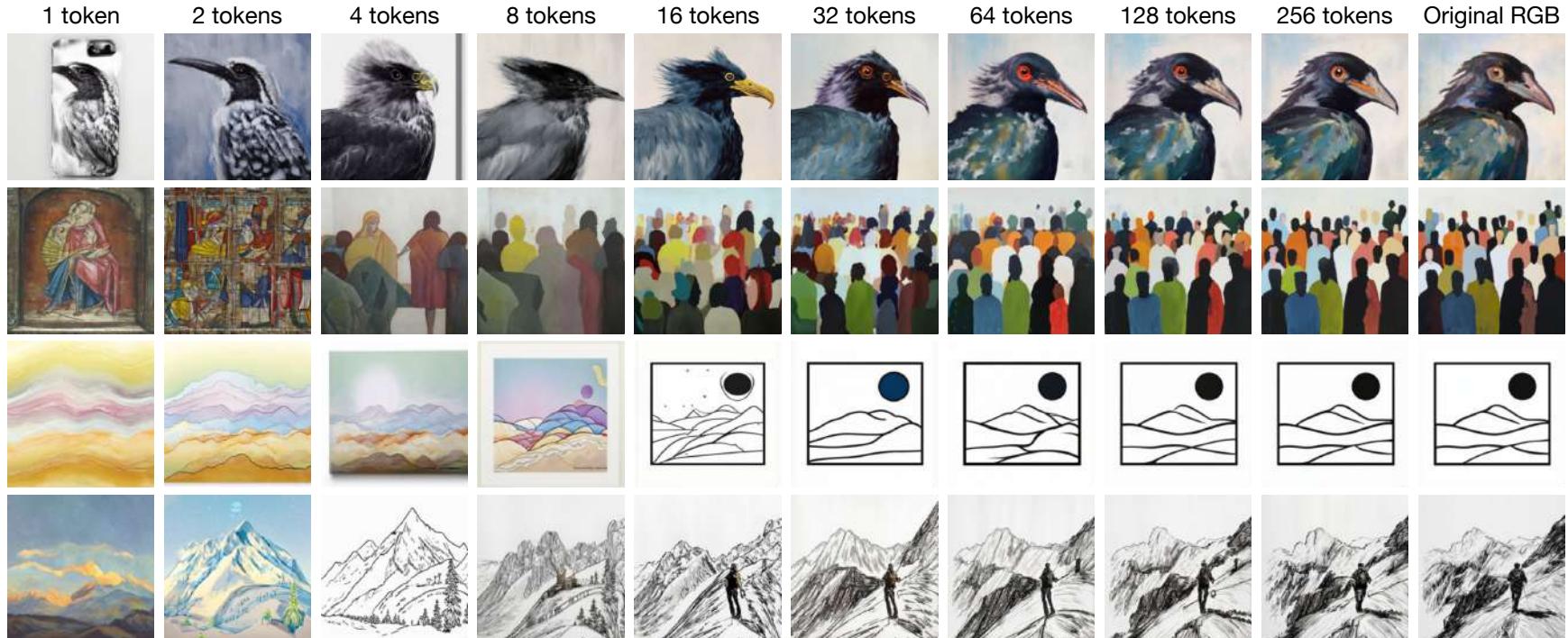
FlexTok reconstruction

Specify a coarse-to-fine "visual vocabulary"



FlexTok reconstruction

Specify a coarse-to-fine "visual vocabulary"



Autoregressive generation

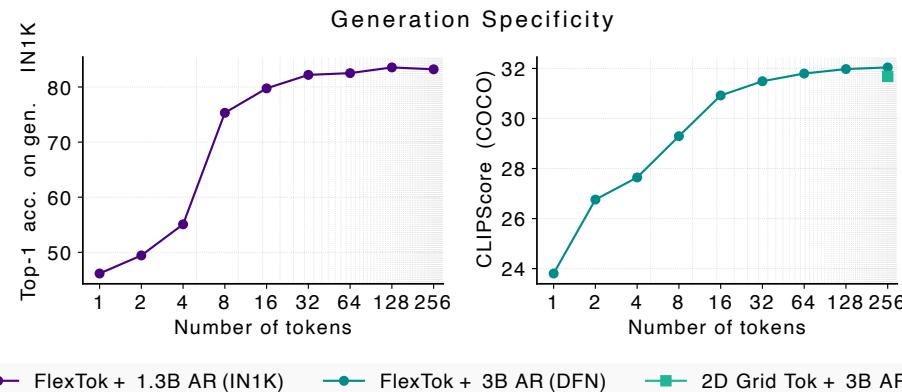
Class-to-image

Autoregressive generation

Text-to-image

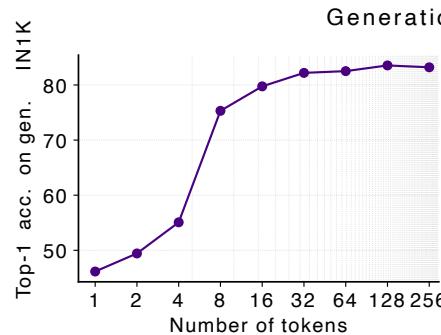
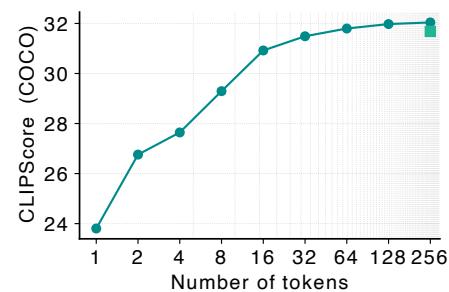
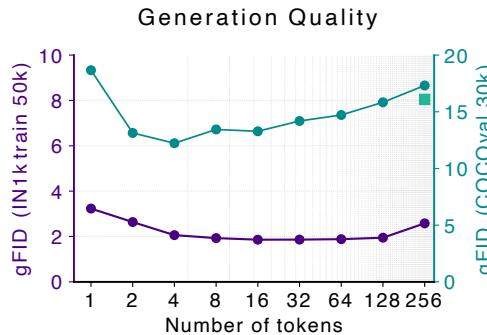
Autoregressive generation

Adaptive conditioning alignment



Autoregressive generation

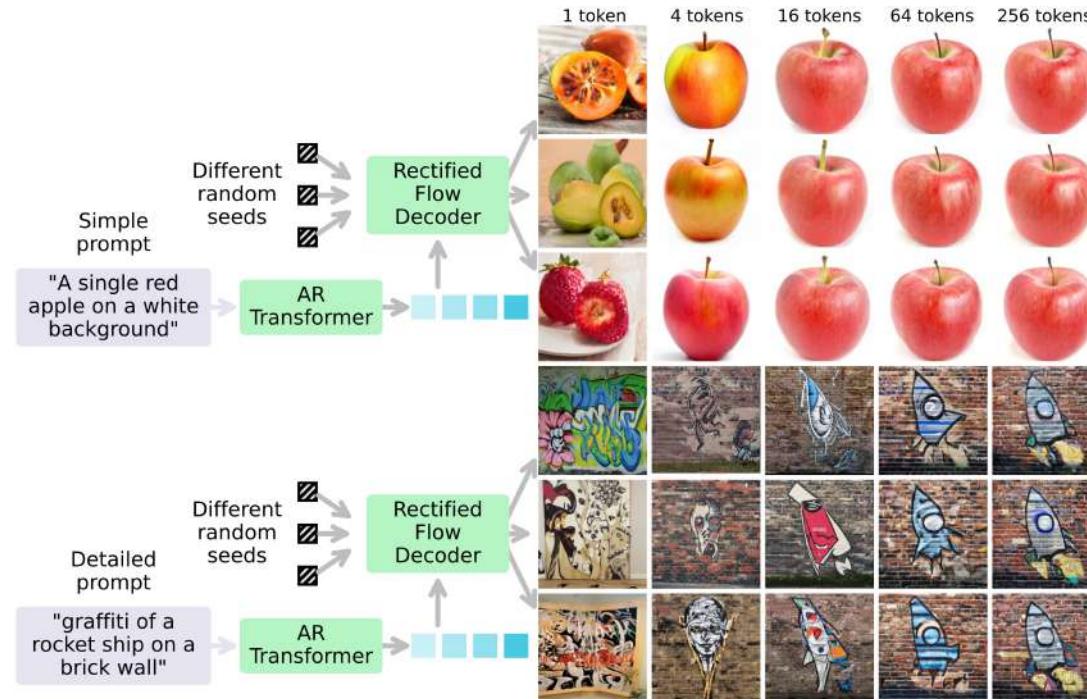
Adaptive conditioning alignment



● FlexTok + 1.3B AR (IN1K) ● FlexTok + 3B AR (DFN) ■ 2D Grid Tok + 3B AR (DFN)

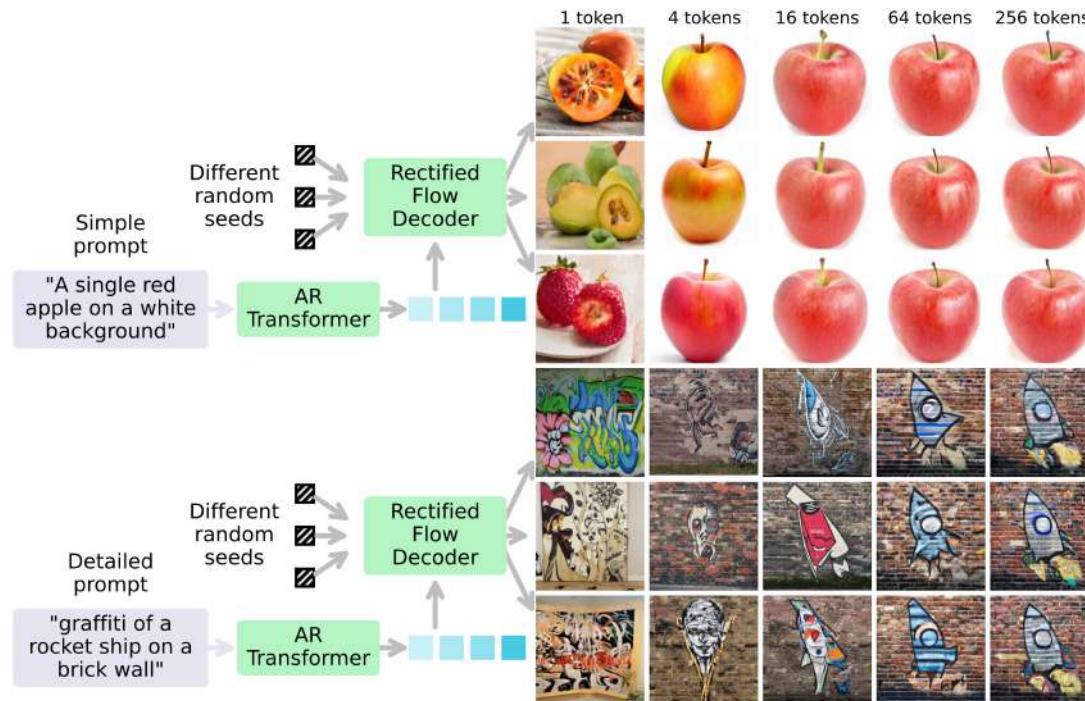
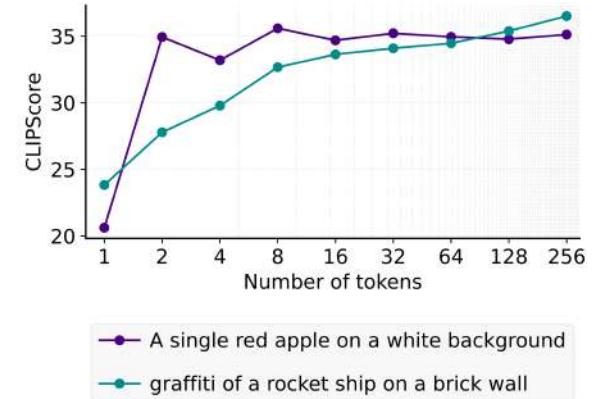
Autoregressive generation

Image generation with simple and complex prompts



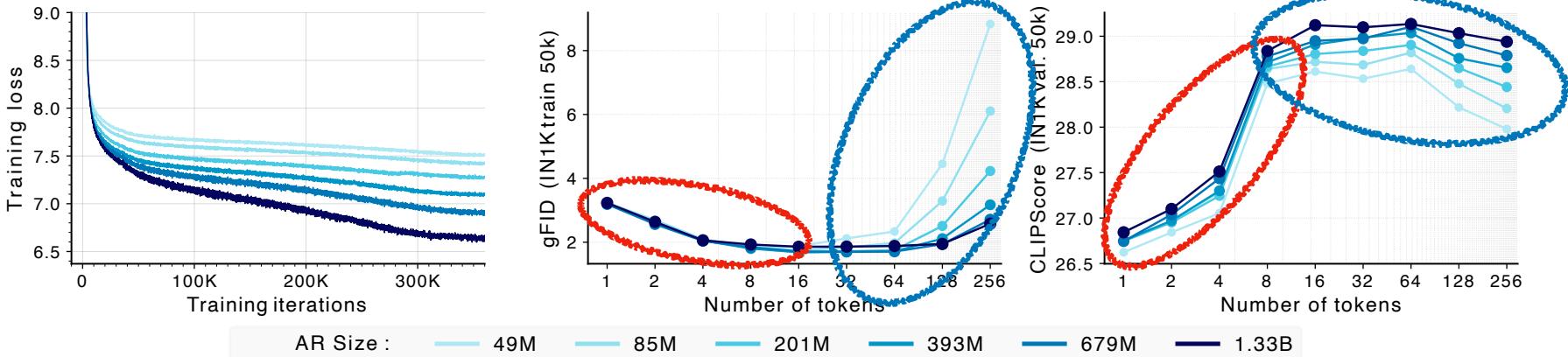
Autoregressive generation

Image generation with simple and complex prompts



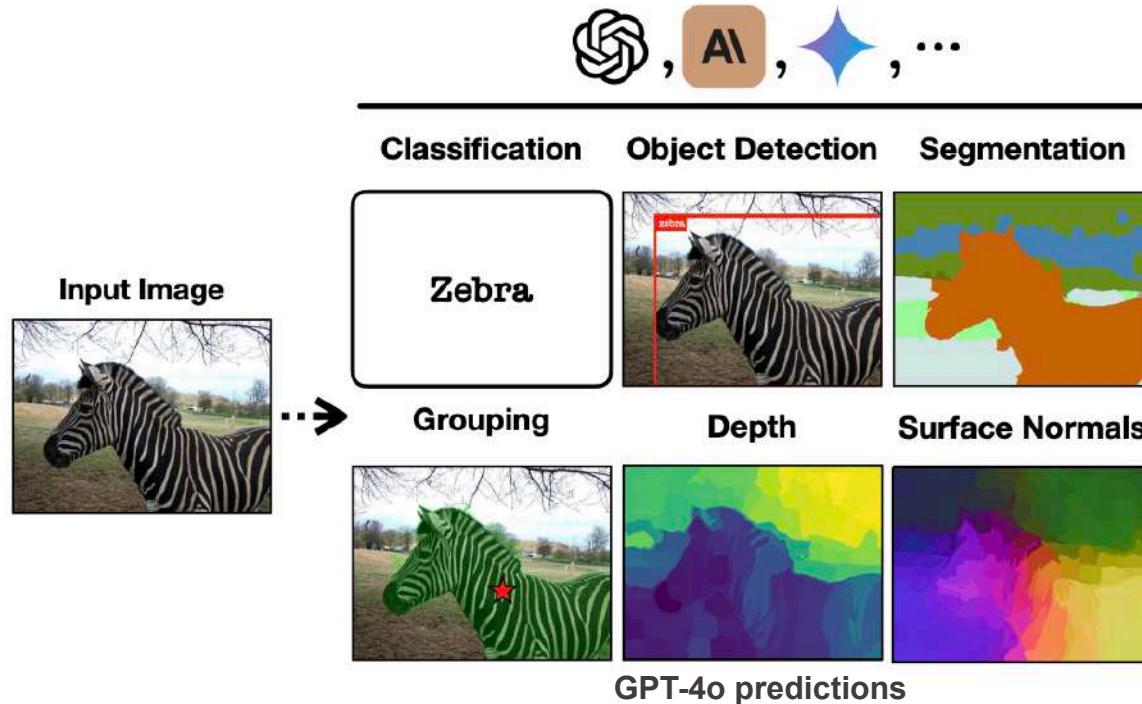
Scaling autoregressive generation

- Prediction quality for first ~8 tokens is independent of model size
- Scaling AR model improves quality and alignment when predicting >32 tokens



Benchmarking popular multimodal FMs

How well does GPT-4o understand vision?

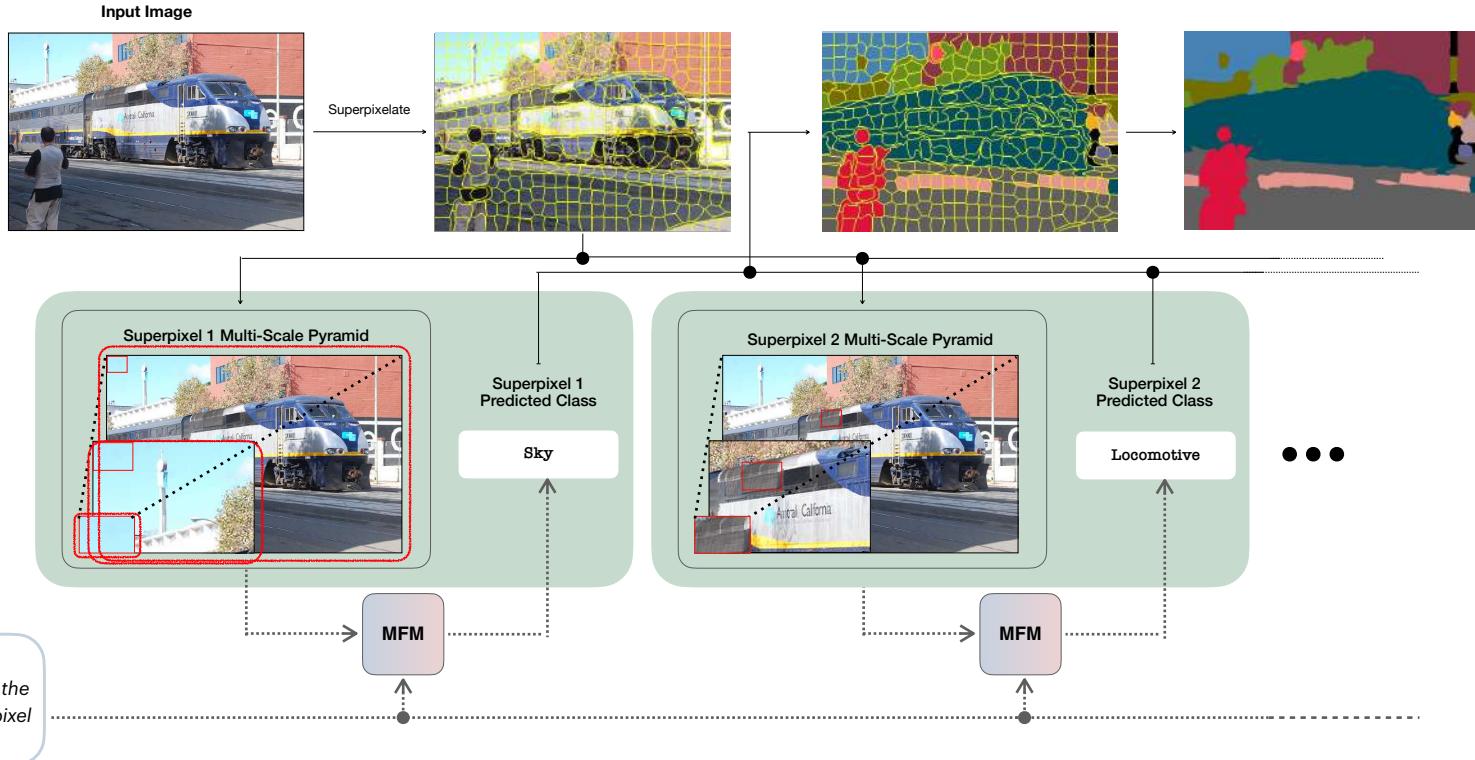


<https://fm-vision-evals.epfl.ch/>

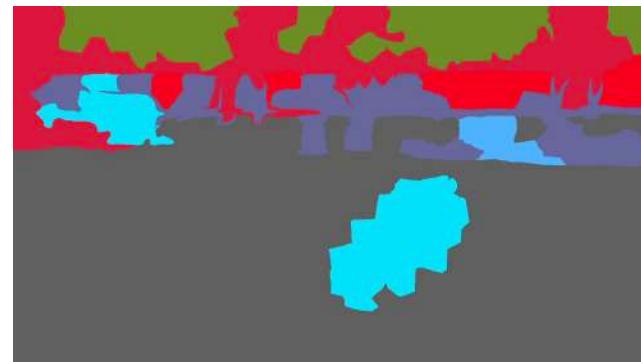
How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks, Ramachandran, Garjani, Bachmann, Atanov *, Kar *, Zamir *. arxiv 2025.

How to extract a non-textual task from chatbots?

e.g., semantic segmentation from chatGPT?

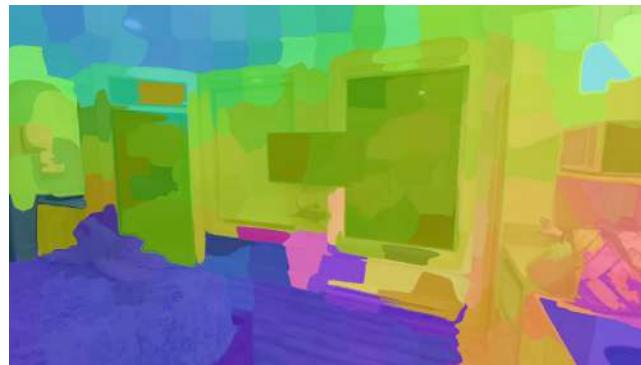


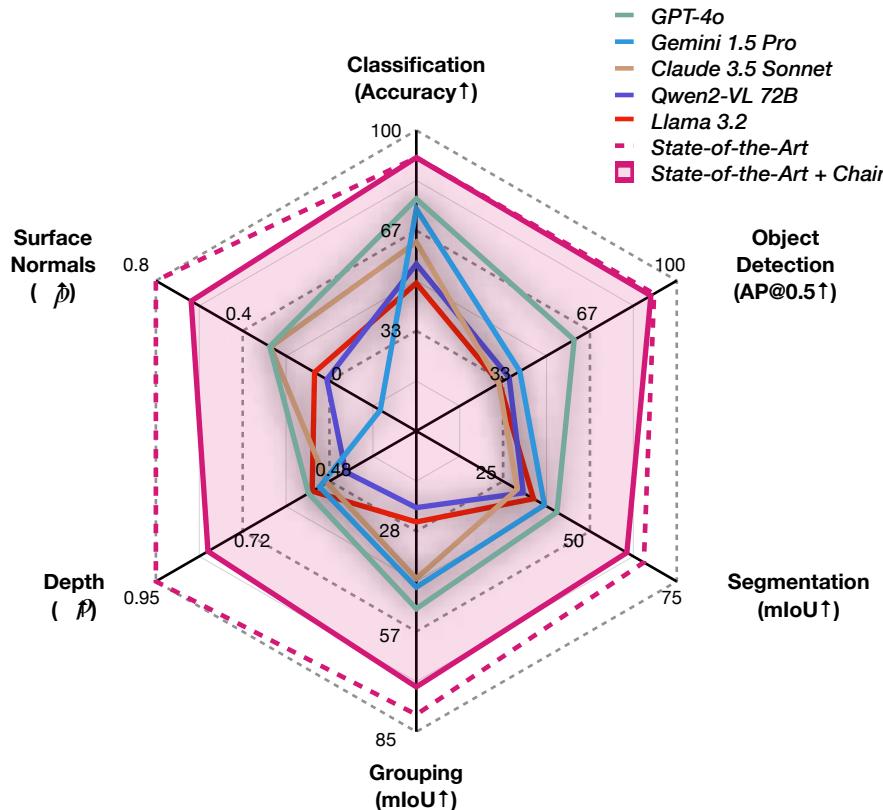
Predictions (GPT-4o)



Predictions

(GPT-4o)



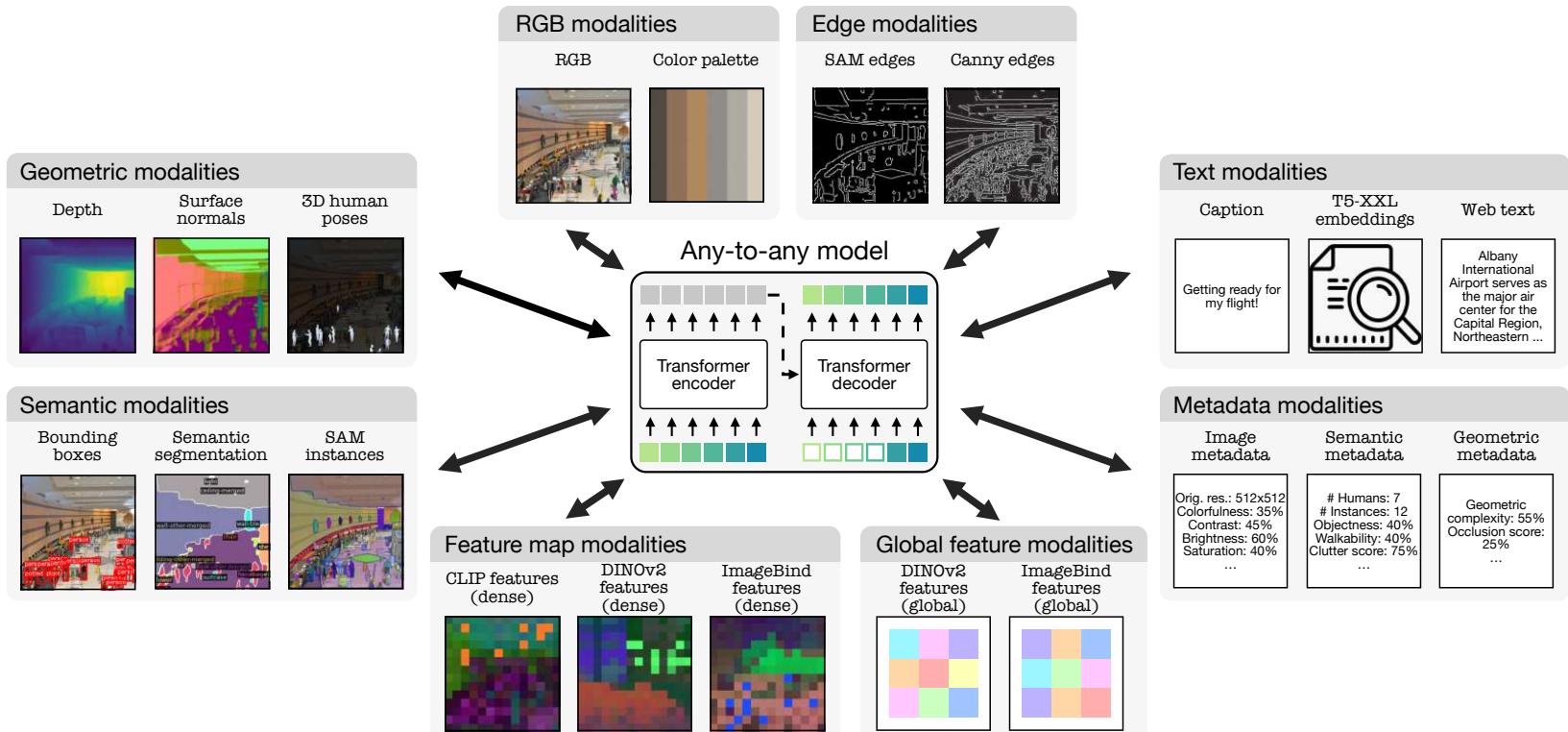


Key Takeaways

- **Not state-of-the-art** but **respectable generalists**.
- **Stronger at semantic tasks** than geometric tasks.
- **GPT-4o outperforms** other models across most tasks.

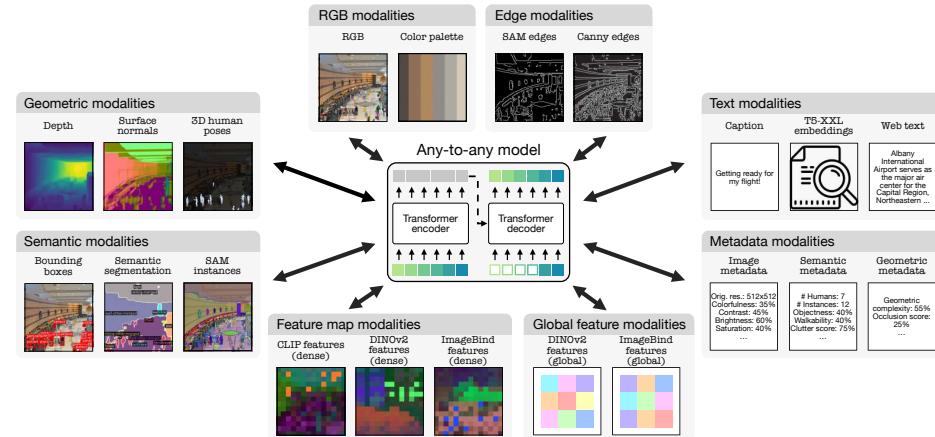
<https://fm-vision-evals.epfl.ch/>

How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks, Ramachandran, Garjani, Bachmann, Atanov *, Kar *, Zamir *. arxiv 2025.



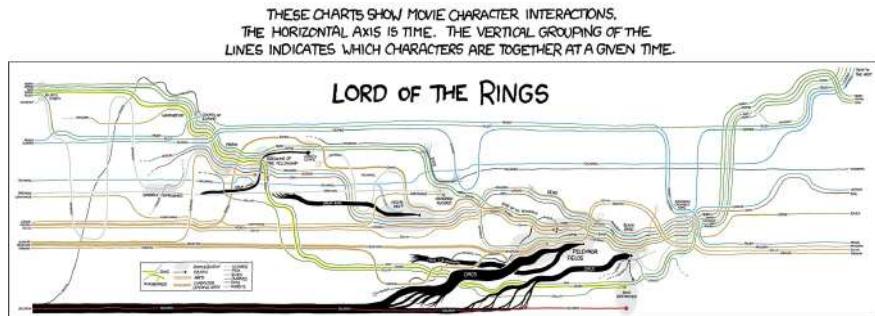
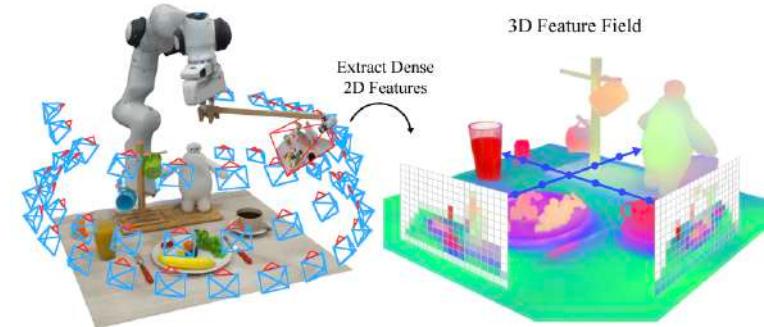
- 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
- MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
- 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

- A scalable versatile multi-modal/Multi-task foundation model
- Ultimate goal: a grounded world model. A “foundation”.



- 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
- MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
- Craik, Kenneth. The nature of explanation. Vol. 445. CUP Archive, 1967.

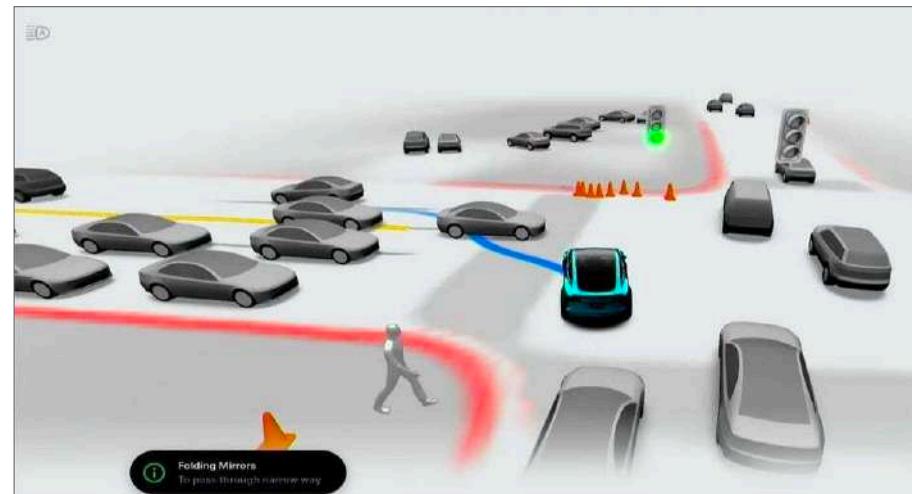
- A scalable versatile multi-modal/Multi-task foundation model
- Ultimate goal: a grounded world model. A “foundation”.
- (Long-form) Video understanding



Shen et al., 2023

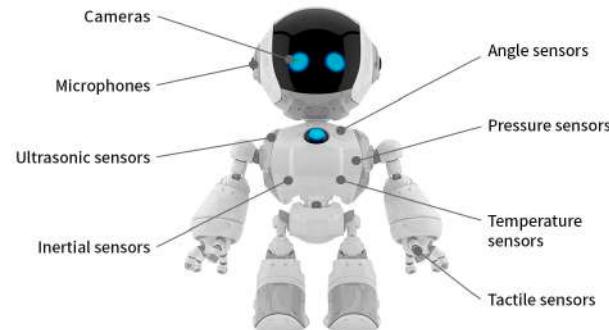
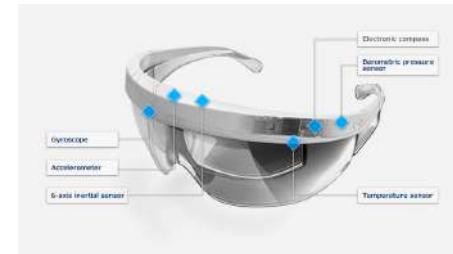
- 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
- MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
- 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

- A scalable versatile **multi-modal/Multi-task foundation model**
- Ultimate goal: **a grounded world model**. A “foundation”.
- (Long-form) Video understanding
- Learning in **higher-level spaces**



- - 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
 - MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
 - 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

- A scalable versatile multi-modal/Multi-task foundation model
- Ultimate goal: a grounded world model. A “foundation”.
- (Long-form) Video understanding
- Learning in higher-level spaces
- **Physical/MM self-supervision**



- 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
- MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
- 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

- A scalable versatile **multi-modal/Multi-task foundation model**
- Ultimate goal: **a grounded world model**. A “foundation”.
- (Long-form) Video understanding
- Learning in higher-level spaces
- Physical/MM self-supervision
- Multimodal in-context learning
- Reasoning
- Co-training
- Inducing emergence

- 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.
- MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
- 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

Questions?

Roman
Bachmann

David
Mizrahi

Oguzhan
Kar

Ali
Garjani

Mingfei
Gao

David
Griffiths

Sogand
Salehi

Andrei
Atanov

Jiawei Fu

Rishabh
Singh

Isabella
Yu

Andrew
Spielberg

Jiming Hu

Teresa
Yeo

Afshin
Dehghan

Amir
Zamir

Multimodal Learning

<https://4m.epfl.ch/>

<https://visual-morphology.epfl.ch/>

<https://viper.epfl.ch/>

<https://amirzamir.com/>

EPFL